Java8 中的流式数据处理】的更多相关文章

java8的流式处理极大了简化我们对于集合.数组等结构的操作,让我们可以以函数式的思想去操作,本篇文章将探讨java8的流式数据处理的基本使用. 一. 流式处理简介 在我接触到java8流式处理的时候,我的第一感觉是流式处理让集合操作变得简洁了许多,通常我们需要多行代码才能完成的操作,借助于流式处理可以在一行中实现. 比如我们希望对一个包含整数的集合中筛选出所有的偶数,并将其封装成为一个新的List返回,那么在java8之前,我们需要通过如下代码实现: List<Integer> evens …
一. 流式处理简介 在我接触到java8流式处理的时候,我的第一感觉是流式处理让集合操作变得简洁了许多,通常我们需要多行代码才能完成的操作,借助于流式处理可以在一行中实现.比如我们希望对一个包含整数的集合中筛选出所有的偶数,并将其封装成为一个新的List返回,那么在java8之前,我们需要通过如下代码实现: List<Integer> evens = new ArrayList<>(); for (final Integer num : nums) { if (num % 2 ==…
转自:https://www.cnblogs.com/shenlanzhizun/p/6027042.html 一. 流式处理简介 在我接触到java8流式处理的时候,我的第一感觉是流式处理让集合操作变得简洁了许多,通常我们需要多行代码才能完成的操作,借助于流式处理可以在一行中实现.比如我们希望对一个包含整数的集合中筛选出所有的偶数,并将其封装成为一个新的List返回,那么在java8之前,我们需要通过如下代码实现: List<Integer> evens = new ArrayList<…
流与集合    众所周知,日常开发与操作中涉及到集合的操作相当频繁,而java中对于集合的操作又是相当麻烦.这里你可能就有疑问了,我感觉平常开发的时候操作集合时不麻烦呀?那下面我们从一个例子说起. 计算从伦敦来的艺术家的人数 请注意这个问题例子在本篇博客中会经常提到,希望你能记住这个简单的例子 这个问题看起来相当的简单,那么使用for循环进行计算 int count = 0; for(Artist artist: allArtists){ if(artisst.isFrom("Lodon&quo…
原文链接:Spark Streaming:大规模流式数据处理的新贵 摘要:Spark Streaming是大规模流式数据处理的新贵,将流式计算分解成一系列短小的批处理作业.本文阐释了Spark Streaming的架构及编程模型,并结合实践对其核心技术进行了深入的剖析,给出了具体的应用场景及优化方案. 提到Spark Streaming,我们不得不说一下BDAS(Berkeley Data Analytics Stack),这个伯克利大学提出的关于数据分析的软件栈.从它的视角来看,目前的大数据处…
转自:http://www.csdn.net/article/2014-01-28/2818282-Spark-Streaming-big-data 提到Spark Streaming,我们不得不说一下BDAS(Berkeley Data Analytics Stack),这个伯克利大学提出的关于数据分析的软件栈.从它的视角来看,目前的大数据处理可以分为如以下三个类型. 复杂的批量数据处理(batch data processing),通常的时间跨度在数十分钟到数小时之间. 基于历史数据的交互式…
流与集合    众所周知,日常开发与操作中涉及到集合的操作相当频繁,而java中对于集合的操作又是相当麻烦.这里你可能就有疑问了,我感觉平常开发的时候操作集合时不麻烦呀?那下面我们从一个例子说起. 计算从伦敦来的艺术家的人数 请注意这个问题例子在本篇博客中会经常提到,希望你能记住这个简单的例子 这个问题看起来相当的简单,那么使用for循环进行计算 int count = 0; for(Artist artist: allArtists){ if(artisst.isFrom("London&qu…
什么是流式传输? 流式传输是这一种以稳定持续流的形式传输数据的技术. 流式传输的使用场景 有些场景中,服务器返回的数据量较大,等待时间较长,客户端不得不等待服务器返回所有数据后,再进行相应的操作.这时候使用流式传输,可以将服务器数据碎片化,当每个数据碎片读取完成之后,就只传输完成的部分,而不需要等待所有数据都读取完成. 如何在ASP.NET Core SignalR中启用流式传输 在ASP.NET Core SignalR中当一个Hub方法的返回值是ChannelReader或者Task<Cha…
流式数据处理在百度数据工厂的应用与实践 原创: 李俊卿 AI前线 今天…
通过前面几篇文章的学习,大家应能掌握几种容器类型的常见用法,对于简单的增删改和遍历操作,各容器实例都提供了相应的处理方法,对于实际开发中频繁使用的清单List,还能利用Arrays工具的asList方法给清单对象做初始化赋值,另外提供了专门的Collections工具进行排序.求最大元素.求最小元素等操作.那么涉及到更加复杂的数据处理,游荡如何有针对性地筛选和进一步加功能?依次遍历目标容器,对所有元素逐个加以分析判断,并酌情将具体数据调整至满意的状态,这种千篇一律的业务流程固然能够解决问题,可惜…