RL Problems】的更多相关文章

1.Delayed, sparse reward(feedback), Long-term planning Hierarchical Deep Reinforcement Learning, Sub-goal, SAMDP, optoins, Thompson sampling, Boltzman exploration, Improving Exploration 2.Partial observability, Imperfect-Information Memory, Nash equi…
转自:http://blog.evjang.com/2017/01/nips2016.html           Eric Jang Technology, A.I., Careers               Monday, January 2, 2017 Summary of NIPS 2016   The 30th annual Neural Information Processing Systems (NIPS) conference took place in Barcelona…
  Deep Learning Research Review Week 2: Reinforcement Learning 转载自: https://adeshpande3.github.io/adeshpande3.github.io/Deep-Learning-Research-Review-Week-2-Reinforcement-Learning This is the 2nd installment of a new series called Deep Learning Resea…
Andrej Karpathy blog About Hacker's guide to Neural Networks Deep Reinforcement Learning: Pong from Pixels May 31, 2016 This is a long overdue blog post on Reinforcement Learning (RL). RL is hot! You may have noticed that computers can now automatica…
  > 目  录 <   learning & intelligence 的基本思想 RL的定义.特点.四要素 与其他learning methods.evolutionary methods的比较 例子(井字棋 tic-tac-toe)及早期发展史    > 笔  记 <  learning & intelligence 的基本思想:learning from interaction RL的定义: RL is learning what to do--how to…
      Deep Deterministic Policy Gradients in TensorFlow AUG 21, 2016 This blog from: http://pemami4911.github.io/blog/2016/08/21/ddpg-rl.html Introduction Deep Reinforcement Learning has recently gained a lot of traction in the machine learning commu…
本文是对Arthur Juliani在Medium平台发布的强化学习系列教程的个人中文翻译,该翻译是基于个人分享知识的目的进行的,欢迎交流!(This article is my personal translation for the tutorial written and posted by Arthur Juliani on Medium.com. And my work is completely based on aim of sharing knowledges and welco…
题目链接: http://poj.org/problem?id=2151 Check the difficulty of problems Time Limit: 2000MSMemory Limit: 65536K 问题描述 Organizing a programming contest is not an easy job. To avoid making the problems too difficult, the organizer usually expect the contes…
蒙特卡罗方法给我的感觉是和Reinforcement Learning: An Introduction的第二章中Bandit问题的解法比较相似,两者皆是通过大量的实验然后估计每个状态动作的平均收益.不过两者的区别也是显而易见,Bandit问题比较简单,状态1->动作1->状态1,这个状态转移过程始终是自我更新的过程,而且是一一对应的关系.蒙特卡罗方法所解决的问题就要复杂一些,通常来说,其状态转移过程可能为,状态1->动作1->状态2->动作1->状态3.Sutten书…
Transferable NAS with RL 2018-CVPR-Learning Transferable Architectures for Scalable Image Recognition Author:Barret Zoph(Google Brain).Quoc V. Le(Google Brain)etc. GitHub: https://github.com/aussetg/nasnet.pytorch https://github.com/MarSaKi/nasnet Ci…