P2197 【模板】nim游戏】的更多相关文章

P2197 [模板]nim游戏 题目描述 甲,乙两个人玩Nim取石子游戏. nim游戏的规则是这样的:地上有n堆石子(每堆石子数量小于10000),每人每次可从任意一堆石子里取出任意多枚石子扔掉,可以取完,不能不取.每次只能从一堆里取.最后没石子可取的人就输了.假如甲是先手,且告诉你这n堆石子的数量,他想知道是否存在先手必胜的策略. 输入输出格式 输入格式: 第一行一个整数T<=10,表示有T组数据 接下来每两行是一组数据,第一行一个整数n,表示有n堆石子,n<=10000; 第二行有n个数,…
首先我们看例题:P2197 nim游戏 题目描述 甲,乙两个人玩Nim取石子游戏. nim游戏的规则是这样的:地上有n堆石子(每堆石子数量小于10000),每人每次可从任意一堆石子里取出任意多枚石子扔掉,可以取完,不能不取.每次只能从一堆里取.最后没石子可取的人就输了.假如甲是先手,且告诉你这n堆石子的数量,他想知道是否存在先手必胜的策略. 输入输出格式 输入格式: 第一行一个整数T<=10,表示有T组数据 接下来每两行是一组数据,第一行一个整数n,表示有n堆石子,n<=10000; 第二行有…
洛谷 P2197 nim游戏 题目描述 甲,乙两个人玩Nim取石子游戏. nim游戏的规则是这样的:地上有n堆石子(每堆石子数量小于10000),每人每次可从任意一堆石子里取出任意多枚石子扔掉,可以取完,不能不取.每次只能从一堆里取.最后没石子可取的人就输了.假如甲是先手,且告诉你这n堆石子的数量,他想知道是否存在先手必胜的策略. 输入输出格式 输入格式: 第一行一个整数T<=10,表示有T组数据 接下来每两行是一组数据,第一行一个整数n,表示有n堆石子,n<=10000; 第二行有n个数,表…
题目描述 甲,乙两个人玩Nim取石子游戏. nim游戏的规则是这样的:地上有n堆石子(每堆石子数量小于10000),每人每次可从任意一堆石子里取出任意多枚石子扔掉,可以取完,不能不取.每次只能从一堆里取.最后没石子可取的人就输了.假如甲是先手,且告诉你这n堆石子的数量,他想知道是否存在先手必胜的策略. 输入输出格式 输入格式: 第一行一个整数T<=10,表示有T组数据 接下来每两行是一组数据,第一行一个整数n,表示有n堆石子,n<=10000; 第二行有n个数,表示每一堆石子的数量 输出格式:…
题目大意:Nim游戏.地上有n堆石子,每人每次可从任意一堆石子里取出任意多石子,不能不取,且每次只能从一堆里取.没石子可取的人输.问是否存在先手必胜的策略. 题解:Nim游戏有一个定理,就是当所有棋子数量的异或和为0时先手必败,否则后手必胜. 卡点:无 C++ Code: #include <cstdio> using namespace std; int Tim, n, a, ans; int main() { scanf("%d", &Tim); while (…
更好的阅读体验点这里 nim游戏 nim游戏 有两个顶尖聪明的人在玩游戏,游戏规则是这样的: 有\(n\)堆石子,两个人可以从任意一堆石子中拿任意多个石子(不能不拿),没法拿的人失败.问谁会胜利 nim游戏是巴什博奕的升级版(不懂巴什博奕的可以看这里) 它不再是简单的一个状态,因此分析起来也棘手许多 如果说巴什博奕仅仅博弈论的一个引子的话, nim游戏就差不多算是真正的入门了 博弈分析 面对新的博弈问题,我们按照套路,从简单的情况入手 当只有一堆石子的时候,先手可以全部拿走.先手必胜 当有两堆石…
题面 洛谷 题解 \(Nim\)游戏模板题 #include<iostream> #include<cstdio> #include<cstdlib> using namespace std; inline int read() { int x=0;bool t=false;char ch=getchar(); while((ch<'0'||ch>'9')&&ch!='-')ch=getchar(); if(ch=='-')t=true,ch…
Nim游戏在ACM中碰到了,就拎出来写写. 一般Nim游戏:有n堆石子,每堆石子有$a_i$个,每次可以取每堆石子中$[0,a_i-1]$,问先手是否有必胜策略. 泛Nim游戏:每堆石子有$a_i$个,每次可以取每堆石子中若干个且有一定限制,问先手是否有必胜策略. 我们定义 : P 表示 先手必败局N 表示 后手必败局 性质1:对于Nim游戏任何局面要么是P要么是N. 给出 N P 状态的严谨定义(性质) : 1. 无法更改局面的局面是 P 2. 可移动到 P 的是 N3. 所有移动都导致 N…
题目链接:https://leetcode-cn.com/problems/nim-game/description/ 您和您的朋友,两个人一起玩 Nim游戏:桌子上有一堆石头,每次你们轮流拿掉 1 到 3 块石头. 拿掉最后一块石头的人就是胜利者.由您来开局. 你们两个都是聪明人,相信都有最佳的游戏策略. 请编写一个函数,来判断您是否可以在给定的石头数量的情况下赢得游戏. 比方说,如果堆中有4块石头,那么你永远不会赢得比赛:无论你拿走的是 1块,2块 还是 3块 石头,最后一块石头总是会被你的…
目前有3堆石子,每堆石子个数也是任意的,双方轮流从中取出石子,规则如下:1)每一步应取走至少一枚石子:每一步只能从某一堆中取走部分或全部石子:2)如果谁不能取谁就失败. Bouton定理: 必败状态当且仅当x1^x2^x3==0 SG函数和SG定理: 对于任意状态x,SG(x)=mex(S),S是x后继状态中SG函数值集合,mex(S)表示不在S内的最小非负整数  SG(x)=0当且仅当x为P 有这样一个游戏,是多个游戏共同进行,每个游戏都执行到底时才算整个游戏结束,每次一个选手可以把一个游戏进…