上节我们提到Stream和List的主要分别是在于Stream的“延后计算“(lazy evaluation)特性.我们还讨论过在处理大规模排列数据集时,Stream可以一个一个把数据元素搬进内存并且可以逐个元素地进行处理操作.这让我不禁联想到我们常用的数据搜索读取方式了:大量的数据存放在数据库里,就好像无穷的数据源头.我们把数据读取方式(那些数据库读写API函数)嵌入Stream的操作函数内,把数据搜索条件传入Stream构造器(constructor)中形成一个对数据搜索操作的描述.这个产生…
scalaz-stream支持无穷数据流(infinite stream),这本身是它强大的功能之一,试想有多少系统需要通过无穷运算才能得以实现.这是因为外界的输入是不可预料的,对于系统本身就是无穷的,比如键盘鼠标输入什么时候终止.网站上有多少网页.数据库中还有多少条记录等等.但对无穷数据流的运算又引发了新的挑战.我们知道,fp程序的主要运算方式是递归算法,这是个问题产生的源泉:极容易掉入StackOverflowError陷阱.相信许多人对scalaz-stream如何实现无穷数据的运算安全都…
在前面的几节讨论里我们终于得出了一个概括又通用的IO Process类型Process[F[_],O].这个类型同时可以代表数据源(Source)和数据终端(Sink).在这节讨论里我们将针对Process[F,O]的特性通过一些应用实例来示范它的组合性(composibility)和由数据源到接收终端IO全过程的功能完整性. 我们已经在前面的讨论中对IO Process的各种函数组合进行了调研和尝试,现在我们先探讨一下数据源设计方案:为了实现资源使用的安全性和IO程序的可组合性,我们必须保证无…
IO处理可以说是计算机技术的核心.不是吗?使用计算机的目的就是希望它对输入数据进行运算后向我们输出计算结果.所谓Stream IO简单来说就是对一串按序相同类型的输入数据进行处理后输出计算结果.输入数据源可能是一串键盘字符.鼠标位置坐标.文件字符行.数据库纪录等.如何实现泛函模式的Stream IO处理则是泛函编程不可或缺的技术. 首先,我们先看一段较熟悉的IO程序: import java.io._ def linesGt4k(fileName: String): IO[Boolean] =…
上期我们讨论了IO处理过程:Process[I,O].我们说Process就像电视信号盒子一样有输入端和输出端两头.Process之间可以用一个Process的输出端与另一个Process的输入端连接起来形成一串具备多项数据处理功能的完整IO过程.但合成的IO过程两头输入端则需要接到一个数据源,而另外一端则可能会接到一个数据接收设备如文件.显示屏等.我们在这篇简单地先介绍一下IO数据源Source和IO数据接收端Sink. 我们先用一个独立的数据类型来代表数据源Source进行简单的示范说明,这…
延后计算(lazy evaluation)是指将一个表达式的值计算向后拖延直到这个表达式真正被使用的时候.在讨论lazy-evaluation之前,先对泛函编程中比较特别的一个语言属性”计算时机“(strict-ness)做些介绍.strict-ness是指系统对一个表达式计算值的时间点模式:即时计算的(strict),或者延后计算的(non-strict or lazy).non-strict或者lazy的意思是在使用一个表达式时才对它进行计值.用个简单直观的例子说明吧: def lazyFu…
简单来说:Monad就是泛函编程中最概括通用的数据模型(高阶数据类型).它不但涵盖了所有基础类型(primitive types)的泛函行为及操作,而且任何高阶类或者自定义类一旦具备Monad特性就可以与任何类型的Monad实例一样在泛函编程中共同提供一套通用的泛函编程方式.所以有人把泛函编程视作Monadic Programming也不为过之.那么,具体什么是Monad呢? 在前面我们讨论过Monoid,我们说过它是一个特殊的范畴(Category),所有数据类型的Monoid实例都共同拥有一…
List是一种最普通的泛函数据结构,比较直观,有良好的示范基础.List就像一个管子,里面可以装载一长条任何类型的东西.如需要对管子里的东西进行处理,则必须在管子内按直线顺序一个一个的来,这符合泛函编程的风格.与其它的泛函数据结构设计思路一样,设计List时先考虑List的两种状态:空或不为空两种类型.这两种类型可以用case class 来表现: trait List[+A] {} case class Cons[+A](head: A, tail: List[A]) extends List…
上两节我们建了一个并行运算组件库,实现了一些基本的并行运算功能.到现在这个阶段,编写并行运算函数已经可以和数学代数解题相近了:我们了解了问题需求,然后从类型匹配入手逐步产生题解.下面我们再多做几个练习吧. 在上节我们介绍了asyncF,它的类型款式是这样的:asyncF(f: A => B): A => Par[B],从类型款式(type signature)分析,asyncF函数的功能是把一个普通的函数 A => B转成A => Par[B],Par[B]是一个并行运算.也就是说…
虽然明白泛函编程风格中最重要的就是对一个管子里的元素进行操作.这个管子就是这么一个东西:F[A],我们说F是一个针对元素A的高阶类型,其实F就是一个装载A类型元素的管子,A类型是相对低阶,或者说是基础的类型.泛函编程风格就是在F内部用对付A类的函数对里面的元素进行操作.但在之前现实编程中确总是没能真正体会这种编程模式畅顺的用法:到底应该在哪里用?怎么用?可能内心里还是没能摆脱OOP的思维方式吧.在前面Stream设计章节里,我们采用了封装形式的数据结构设计,把数据结构uncons放进了特质申明里…