Solution -「多校联训」朝鲜时蔬】的更多相关文章

\(\mathcal{Description}\)   Link.   破案了,朝鲜时蔬 = 超现实树!(指写得像那什么一样的题面.   对于整数集 \(X\),定义其 好子集 为满足 \(Y\subseteq X\land\left(\sum_{y\in Y}y\right)\mid\left(\sum_{x\in X}x\right)\) 的任意 \(Y\).求 \(S_n=[1,n]\cap\mathbb N\) 的所有 \(m\) 阶子集中,包含 \(k\) 阶 好子集 数量最多的子集数…
\(\mathcal{Description}\)   Link.   给定长度为 \(n\) 的合法表达式序列 \(s\),其中数字仅有一位正数,运算符仅有 - 作为占位.求将其中恰好 \(k\) 个 - 替换为 +,其余 - 替换为 * 的所有方案得到的表达式结果之和.答案模 \((10^9+7)\).   \(n\le10^5\)(可能有无意义的多层括号嵌套),- 的总数 \(m\le2.5\times10^3\). \(\mathcal{Solution}\)   复杂表达式问题,应当考…
\(\mathcal{Description}\)   Link.   一种物品有 长度 和 权值 两种属性,现给定 \(n\) 组物品,第 \(i\) 组有 \(k_i\) 个,分别为 \((1,a_{i,1})..(k_i,a_{i,k_i})\),求在每组物品里恰好选择一个物品,且物品长度和恰为 \(i=n..\sum k\) 时的最大物品权值和.   \(n\le10^5\),\(k_i\le5\). \(\mathcal{Solution}\)   本次 NOIP 模拟赛 考察的知识点…
\(\mathcal{Description}\)   Link.   给定序列 \(\{a_n\}\),和 \(q\) 次形如 \([L,R]\) 的询问,每次回答 \[\sum_{[l,r]\subseteq [L,R]}\min_{i=l}^r\{a_i\}\cdot\max_{i=l}^r\{a_i\}\pmod{10^9+7}. \]   \(n,q\le10^5\). \(\mathcal{Solution}\)   瞬间联想到 这道题,尝试把询问挂到猫树上分治处理.对于分治区间 \…
\(\mathcal{Description}\)   Link   (稍作简化:)对于变量 \(p_{1..n}\),满足 \(p_i\in[0,1],~\sum p_i=1\) 时,求 \(\max \sum_{i=1}^n(p_i-p_i^2)i\).   数据组数 \(T\le10^5\),\(n\le10^6\). \(\mathcal{Solution}\)   Lagrange 乘子法的板题,可惜我不会.(   先忽略 \(p_i\in[0,1]\) 的限制,发现这是一个带约数的最…
\(\mathcal{Description}\)   Link.   一个游戏包含若干次卡牌抽取,每次以 \(p_l\) 的概率得到 \(+1\),\(p_d\) 的概率得到 \(-1\),否则得到 \(0\),操作后以 \(p\) 的概率结束游戏,求每次抽取后,满足 \(+1\) 数量大于 \(-1\) 数量的抽取轮数的期望值.不取模.   \(0<p\le1\),\(0\le p_l,p_d,p_l+p_d\le 1\). \(\mathcal{Solution}\)   我请愿为Tiw…
\(\mathcal{Description}\)   Link.   有 \(n\) 堆石子,第 \(i\) 堆有 \(x_i\) 个,Alice 每次只能从这堆中拿走 \(a_i\) 个石子,Bob 每次只能从这堆中拿走 \(b_i\) 个石子,不能操作者负.对于 \(i=1,2,\dots,n\),求只考虑 \([1,i]\) 的石子堆时,双方博弈的结果(有 Alice 必胜.Bob 必胜.先手必胜.后手必胜四种结果).   \(n\le10^5\). \(\mathcal{Solutio…
\(\mathcal{Description}\)   Link.   给定 \(x,\{d_i\}_{i=1}^n,\{p_i\}_{i=2}^n,\{b_i\}_{i=2}^n,\{c_i\}_{i=2}^n\),构造矩阵 \(A=(a_{ij})_{n\times n}\): \[a_{ij}=\begin{cases} b_j,&i=p_j\\ c_i,&j=p_i\\ d_i,&i=j\\ x,&\text{otherwise} \end{cases}. \] 求…
\(\mathcal{Description}\)   Link.   求含有 \(n\) 个结点的所有有标号简单无向图中,最小点覆盖为 \(m\) 的图的数量的奇偶性.\(T\) 组数据.   \(n,m\le3\times10^3\),\(T\le5\times10^3\). \(\mathcal{Solution}\)   太神了叭!   总不能硬刚 NPC,我们必须牢牢把握"奇偶性"带来的便利:若存在某种规则将一类图两两配对,则我们可以忽略这些图而不影响答案.顺便做一步转化,最…
\(\mathcal{Description}\)   Link.   A B 两人在树上博弈,初始时有一枚棋子在结点 \(1\).由 A 先操作,两人轮流移动沿树上路径棋子,且满足本次移动的树上距离严格大于上次的,无法移动者负.先给定一棵含 \(n\) 个结点的树,求包含结点 \(1\) 且使得 B 必胜的联通块数量.   \(n\le2\times10^5\). \(\mathcal{Solution}\)   结论对了正解写了细节萎了暴力分都没了 qwq--   结论:联通块满足条件,当且…