CVPR2020:点云三维目标跟踪的点对盒网络(P2B) P2B: Point-to-Box Network for 3D Object Tracking in Point Clouds 代码:https://github.com/HaozheQi/P2B 论文地址: https://openaccess.thecvf.com/content_CVPR_2020/papers/Qi_P2B_Point-to-Box_Network_for_3D_Object_Tracking_in_Point_…
ICCV2019论文点评:3D Object Detect疏密度点云三维目标检测 STD: Sparse-to-Dense 3D Object Detector for Point Cloud 论文链接:https://arxiv.org/pdf/1907.10471.pdf 本文在LITTI数据集3D Object Detection三维目标检测性能排名第5. 摘要 提出了一种新的两级三维目标检测框架,称为稀疏到稠密三维目标检测框架(STD).第一阶段是一个自下而上的提案生成网络,它使用原始点…
CVPR 2020目标跟踪多篇开源论文(上) 1. SiamBAN:面向目标跟踪的Siamese Box自适应网络 作者团队:华侨大学&中科院&哈工大&鹏城实验室&厦门大学等 论文链接:https://arxiv.org/abs/2003.06761 代码链接:https://github.com/hqucv/siamban 注:表现SOTA!速度高达40 FPS!性能优于DiMP.SiamRPN++和ATOM等网络. 大多数现有的跟踪器通常依赖于多尺度搜索方案或预定义的a…
CVPR2020论文解读:3D Object Detection三维目标检测 PV-RCNN:Point-Voxel Feature Se tAbstraction for 3D Object Detection 论文链接:https://arxiv.org/pdf/1912.13192.pdf 本文在LITTI数据集3D Object Detection三维目标检测性能排名第一. 摘要 提出了一种新的高性能的三维目标检测框架:点体素RCNN(PV-RCNN),用于从点云中精确检测三维目标.该方…
CVPR2020:利用图像投票增强点云中的三维目标检测(ImVoteNet) ImVoteNet: Boosting 3D Object Detection in Point Clouds With Image Votes 论文地址: https://openaccess.thecvf.com/content_CVPR_2020/papers/Qi_ImVoteNet_Boosting_3D_Object_Detection_in_Point_Clouds_With_Image_CVPR_202…
感觉是机器翻译,好多地方不通顺,凑合看看 原文名称:Complex-YOLO: An Euler-Region-Proposal for  Real-time 3D Object Detection on Point Clouds原文地址:http://www.sohu.com/a/285118205_715754代码位置:https://github.com/Mandylove1993/complex-yolo(值得复现一下) 摘要.基于激光雷达的三维目标检测是自动驾驶的必然选择,因为它直接关…
一. 何为相关滤波? Correlation Filter 最早应用于信号处理,用来描述两个信号之间的相关性,或者说相似性(有点像早期的概率密度),先来看定义: 对于两个数据 f 和 g,则两个信号的相关性(correlation)为: 其中 f∗ 表示 f 的 复共轭,这是和卷积的区别(相关性 与 卷积 类似,区别就在于里面的共轭). PS:复共轭是指 实部不变,虚部取反 (a + b i)* = a - b i:  共轭矩阵是指 矩阵转置后再对每个元素求共轭,不理解的童鞋请查阅百科. 二.…
基于视频结构化的应用中,目标在经过跟踪算法后,会得到一个唯一标识和它对应的运动轨迹,利用这两个数据我们可以做一些后续工作:测速(交通类应用场景).计数(交通类应用场景.安防类应用场景)以及行为检测(交通类应用场景.安防类应用场景).我会写三篇文章依次介绍这三个主题. (1)目标跟踪之速度计算 (2)目标跟踪之计数 (3)目标跟踪之行为检测 至此,三个主题都结束了. 本篇文章以交通类应用场景为例,介绍车辆异常行为分析方法.车辆异常行为通常又称“车辆异常交通事件”,指车辆在行驶道路上出现的违法行为,…
(哥廷根大学) 摘要 文章提出了一种表示空间扩展物体轮廓的新方法,该方法适用于采用激光雷达跟踪未知尺寸和方向的车辆.我们在笛卡尔坐标系中使用二次均匀周期的B-Splines直接表示目标的星 - 凸形状近似.与之前在极坐标下工作的方法相比,我们引入了一个新的步行参数来模拟物体的轮廓功能,使得形状参数很好地被定义,并且与测量值位于同一空间内.该方法的主要优点是可以通过缩放样条的基点来独立地执行长度和宽度的缩放. 一.引言 对于汽车领域,特别是高级驾驶辅助系统(ADAS)功能,扩展目标跟踪(EOT)的…
找到一些关于目标跟踪的资料 http://blog.csdn.net/jinshengtao/article/details/30258833 http://blog.sina.com.cn/s/blog_6949fede010123kl.html http://www.cnblogs.com/tornadomeet/archive/2012/03/15/2398769.html…