KNN和SVM的区别和联系】的更多相关文章

先从两者的相同点来看吧,两者都是比较经典的机器学习分类算法,都属于监督学习算法,都对机器学习的算法选择有着重要的理论依据. 区别: 1 KNN对每个样本都要考虑.SVM是要去找一个函数把达到样本可分. 2 朴素的KNN是不会去自助学习特征权重的,SVN的本质就是在找权重. 3 KNN不能处理样本维度太高的东西,SVM处理高纬度数据比较优秀. 怎么选择使用二者呢? 1 选择KNN的场景: @ 准确度不需要精益求精. @ 样本不多. @ 样本不能一次性获取.智能随着时间一个个得到. 2 选择SVM的…
KNN(K-Nearest Neighbor)介绍 Wikipedia上的 KNN词条 中有一个比较经典的图如下: KNN的算法过程是是这样的: 从上图中我们可以看到,图中的数据集是良好的数据,即都打好了label,一类是蓝色的正方形,一类是红色的三角形,那个绿色的圆形是我们待分类的数据. 如果K=3,那么离绿色点最近的有2个红色三角形和1个蓝色的正方形,这3个点投票,于是绿色的这个待分类点属于红色的三角形. 如果K=5,那么离绿色点最近的有2个红色三角形和3个蓝色的正方形,这5个点投票,于是绿…
KNN和K-Means的区别 KNN K-Means 1.KNN是分类算法 2.监督学习 3.喂给它的数据集是带label的数据,已经是完全正确的数据 1.K-Means是聚类算法 2.非监督学习 3.喂给它的数据集是无label的数据,是杂乱无章的,经过聚类后才变得有点顺序,先无序,后有序 没有明显的前期训练过程,属于memory-based learning 有明显的前期训练过程 K的含义:来了一个样本x,要给它分类,即求出它的y,就从数据集中,在x附近找离它最近的K个数据点,这K个数据点,…
一.相同点 第一,LR和SVM都是分类算法(SVM也可以用与回归) 第二,如果不考虑核函数,LR和SVM都是线性分类算法,也就是说他们的分类决策面都是线性的. 这里要先说明一点,那就是LR也是可以用核函数的.总之,原始的LR和SVM都是线性分类器,这也是为什么通常没人问你决策树和LR什么区别,你说一个非线性分类器和一个线性分类器有什么区别? 第三,LR和SVM都是监督学习算法. 第四,LR和SVM都是判别模型. 这里简单讲解一下判别模型和生成模型的差别: 判别式模型(Discriminative…
之前整理过一篇关于逻辑回归的帖子,但是只是简单介绍了一下了LR的基本思想,面试的时候基本用不上,那么这篇帖子就深入理解一下LR的一些知识,希望能够对面试有一定的帮助. 1.逻辑斯谛分布 介绍逻辑斯谛回归模型之前,首先看一个并不常见的概率分布,即逻辑斯谛分布.设X是连续随机变量,X服从逻辑斯谛分布是指X具有如下的累积分布函数和概率密度函数: 式中,μ为位置参数,γ>0为形状参数.逻辑斯谛的分布的密度函数f(x)和分布函数F(x)的图形如下图所示.其中分布函数属于逻辑斯谛函数,其图形为一条S形曲线.…
首先说一下两种学习方式: lazy learning  和  eager learning. 先说 eager learning, 这种学习方式是指在进行某种判断(例如,确定一个点的分类或者回归中确定某个点对应的函数值)之前,先利用训练数据进行训练得到一个目标函数,待需要时就只利用训练好的函数进行决策,这是一种一劳永逸的方法, SVM 就属于这种学习方式: 而 lazy learning 是指只有到了需要决策时才会利用已有数据进行决策,而在这之前不会经历eager learning 所拥有的训练…
简介 K近邻法(knn)是一种基本的分类与回归方法.k-means是一种简单而有效的聚类方法.虽然两者用途不同.解决的问题不同,但是在算法上有很多相似性,于是将二者放在一起,这样能够更好地对比二者的异同. 算法描述 knn 算法思路:如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别. k近邻模型的三个基本要素: k值的选择:k值的选择会对结果产生重大影响.较小的k值可以减少近似误差,但是会增加估计误差:较大的k值可以减小估计误差,但…
开始的时候,我居然弄混了. knn是分类方法,是通过新加入的节点最接近的N个节点的属性,来判定新的节点. kmeans是聚类方法,是先选择k个点作为k个簇的中点,然后分簇之后重新划定中心点,然后再分簇的方法. knn可以参考 http://www.cnblogs.com/charlesblc/p/6193979.html kmeans可以参考 http://www.cnblogs.com/bourneli/p/3645049.html…
最近研究数据挖掘的相关知识,总是搞混一些算法之间的关联,俗话说好记性不如烂笔头,还是记下了以备不时之需. 首先明确一点KNN与Kmeans的算法的区别: 1.KNN算法是分类算法,分类算法肯定是需要有学习语料,然后通过学习语料的学习之后的模板来匹配我们的测试语料集,将测试语料集合进行按照预先学习的语料模板来分类 2Kmeans算法是聚类算法,聚类算法与分类算法最大的区别是聚类算法没有学习语料集合. K-means算法是聚类分析中使用最广泛的算法之一.它把n个对象根据他们的属性分为k个聚类以便使得…
因为<opencv_tutorial>这部分只有两个例子,就先暂时介绍两个例子好了,在refman中ml板块有:统计模型.普通的贝叶斯分类器.KNN.SVM.决策树.boosting.随机树.EM(期望最大化).NN(神经网络).LR(逻辑回归)和training data(训练数据) 这部分要特别说明:http://www.opencv.org.cn/opencvdoc/2.3.2/html/doc/tutorials/ml/introduction_to_svm/introduction_…