关于python中的矩阵乘法,我们一般有两种数据格式可以实现:np.array()类型和np.mat()类型: 对于这两种数据类型均有三种操作方式: (1)乘号 * (2)np.dot() (3)np.multiply() 而这三种操作方式在操作这两种数据格式时又有点区别,下面一一列出来: import numpy as np #np.array() type #1. np.dot() a = np.array([[1 , 2] , [3 , 4]] , dtype = np.float) b…
https://docs.scipy.org/doc/numpy-dev/user/quickstart.html  (numpy官网一些教程) numpy教程:数组创建 python中的矩阵.多维数组----numpy 1. 引言 最近在将一个算法由matlab转成python,初学python,很多地方还不熟悉,总体感觉就是上手容易,实际上很优雅地用python还是蛮难的.目前为止,觉得就算法仿真研究而言,还是matlab用得特别舒服,可能是比较熟悉的缘故吧.matlab直接集成了很多算法工…
版权声明:本文为博主非原创文章,未经博主允许可以转载.     Python中的list和array的不同之处 python中的list是python的内置数据类型,list中的数据类不必相同的,而array的中的类型必须全部相同.在list中的数据类型保存的是数据的存放的地址,简单的说就是指针,并非数据,这样保存一个list就太麻烦了,例如list1=[1,2,3,'a']需要4个指针和四个数据,增加了存储和消耗cpu. numpy中封装的array有很强大的功能,里面存放的都是相同的数据类型…
Python中的矩阵转置 via 需求: 你需要转置一个二维数组,将行列互换. 讨论: 你需要确保该数组的行列数都是相同的.比如: arr = [[1, 2, 3], [4, 5, 6], [7, 8, 9], [10, 11, 12]] 列表递推式提供了一个简便的矩阵转置的方法: print [[r[col] for r in arr] for col in range(len(arr[0]))][[1, 4, 7, 10], [2, 5, 8, 11], [3, 6, 9, 12]] 另一个…
python中的list和array的不同之处list是列表,可以通过索引查找数值,但是不能对整个列表进行数值运算 In [96]: b=[1,2] In [97]: b[1]Out[97]: 2In [98]: type(b)Out[98]: listIn [99]: b+bOut[99]: [1, 2, 1, 2]array是数组,也可以通过索引值查找数据,但是能对整个数组进行数值运算In [100]: a=np.array([1,2In [101]: a[1]Out[101]: 2In […
参考文章  Python中,如何初始化不同的变量类型为空值 常见的数字,字符,很简单,不多解释. 列表List的其值是[x,y,z]的形式 字典Dictionary的值是{x:a, y:b, z:c}的形式 元组Tuple的值是(a,b,c)的形式 所以,这些数据类型的变量,初始化为空值分别是: 数值 digital_value = 0 字符串 str_value = "" 或 str_value = ” 列表 list_value = [] 字典 ditc_value = {} 元组…
2. 创建一般的多维数组 import numpy as np a = np.array([1,2,3], dtype=int)  # 创建1*3维数组   array([1,2,3]) type(a)  # numpy.ndarray类型 a.shape  # 维数信息(3L,) a.dtype.name   # 'int32' a.size   # 元素个数:3 a.itemsize  #每个元素所占用的字节数目:4     b=np.array([[1,2,3],[4,5,6]],dtyp…
最近在将一个算法由matlab转成python,初学python,很多地方还不熟悉,总体感觉就是上手容易,实际上很优雅地用python还是蛮难的.目前为止,觉得就算法仿真研究而言,还是matlab用得特别舒服,可能是比较熟悉的缘故吧.matlab直接集成了很多算法工具箱,函数查询.调用.变量查询等非常方便,或许以后用久了python也会感觉很好用.与python相比,最喜欢的莫过于可以直接选中某段代码执行了,操作方便,python也可以实现,就是感觉不是很方便. 言归正传,做算法要用到很多的向量…
Numpy 是Python中科学计算的核心库.它提供一个高性能多维数据对象,以及操作这个对象的工具.部分功能如下: ndarray, 具有矢量算术运算和复杂广播能力的快速且节省空间的多维数组. 用于对整组数据进行快速运算的标准数学函数(无需编写循环). 用于读写磁盘数据的工具以及用于操作内存映射文件的工具. 线性代数.随机数生成以及傅里叶变换功能. 用于集成C.C++.Fortran等语言编写的代码的工具. 首先要导入numpy库:import numpy as np NumPy函数和属性: 类…
原文地址:  http://blog.csdn.net/liyaohhh/article/details/51055147#reply python中的list是python的内置数据类型,list中的数据类不必相同的,而array的中的类型必须全部相同.在list中的数据类型保存的是数据的存放的地址,简单的说就是指针,并非数据,这样保存一个list就太麻烦了,例如list1=[1,2,3,'a']需要4个指针和四个数据,增加了存储和消耗cpu. numpy中封装的array有很强大的功能,里面…