MapReduce原理及操作】的更多相关文章

MapReduce概念 MapReduce是一种分布式计算模型,由谷歌提出,主要用于搜索领域,解决海量数据计算问题. MR由两个阶段组成:Map和Reduce,用户只需要实现map()和reduce()两个函数实现分布式计算. 这两个函数的形参是key,value对,表示函数的输入信息. MP执行流程 客户端提交给jobtracker,jobtracker分配给tasktracker. trasktracker会对任务进行mapper和reducer操作. MapReduce原理 一个map输入…
注意:本实验是对前述实验的延续,如果直接点开始实验进入则需要按先前学习的方法启动hadoop 部署节点操作系统为CentOS,防火墙和SElinux禁用,创建了一个shiyanlou用户并在系统根目录下创建/app目录,用于存放 Hadoop等组件运行包.因为该目录用于安装hadoop等组件程序,用户对shiyanlou必须赋予rwx权限(一般做法是root用户在根目录下 创建/app目录,并修改该目录拥有者为shiyanlou(chown –R shiyanlou:shiyanlou /app…
大数据实战(上) # MapReduce原理介绍 大纲: * Mapreduce介绍 * MapReduce2运行原理 * shuffle及排序    定义 * Mapreduce 最早是由google公司研究提出的一种免息nag大规模数据处理的并行计算模型和方法.是hadoop面向大数据并行处理的计算模型.框架和平台 * Mapreduce是一个计算框架,既然是做计算的框架,那么表现形式就是有个输入(input),mapreduce操作这个输入(input),通过本身定义好的计算模型,得到一个…
大数据运算模型 MapReduce 原理 2016-01-24 杜亦舒 MapReduce 是一个大数据集合的并行运算模型,由google提出,现在流行的hadoop中也使用了MapReduce作为计算模型 MapReduce 通俗解释 图书馆要清点图书数量,有10个书架,管理员为了加快统计速度,找来了10个同学,每个同学负责统计一个书架的图书数量张同学 统计 书架1王同学 统计 书架2刘同学 统计 书架3......过了一会儿,10个同学陆续到管理员这汇报自己的统计数字,管理员把各个数字加起来…
本文版权归作者和博客园共有,欢迎转载,但未经作者同意必须保留此段声明,且在文章页面明显位置给出原文连接,博主为石山园,博客地址为 http://www.cnblogs.com/shishanyuan  .该系列课程是应邀实验楼整理编写的,这里需要赞一下实验楼提供了学习的新方式,可以边看博客边上机实验,课程地址为 https://www.shiyanlou.com/courses/237 [注]该系列所使用到安装包.测试数据和代码均可在百度网盘下载,具体地址为 http://pan.baidu.c…
原文:http://www.infotech.ac.cn/article/2012/1003-3513-28-2-60.html MapReduce原理及其主要实现平台分析 亢丽芸, 王效岳, 白如江 摘要 关键词: MapReduce; 实现平台; Hadoop; Phoenix; Disco; Mars Analysis of MapReduce Principle and Its Main Implementation Platforms Kang Liyun, Wang Xiaoyue,…
MapReduce原理与设计思想 简单解释 MapReduce 算法 一个有趣的例子:你想数出一摞牌中有多少张黑桃.直观方式是一张一张检查并且数出有多少张是黑桃? MapReduce方法则是: 给在座的所有玩家中分配这摞牌 让每个玩家数自己手中的牌有几张是黑桃,然后把这个数目汇报给你 你把所有玩家告诉你的数字加起来,得到最后的结论 拆分 MapReduce合并了两种经典函数: 映射(Mapping)对集合里的每个目标应用同一个操作.即,如果你想把表单里每个单元格乘以二,那么把这个函数单独地应用在…
MapReduce原理 WordCount例子 用mapreduce计算wordcount的例子: package org.apache.hadoop.examples; import java.io.IOException; import java.util.StringTokenizer; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.Path; import org.apache.hadoo…
这里分析MapReduce原理并没用WordCount,目前没用过hadoop也没接触过大数据,感觉,只是感觉,在项目中,如果真的用到了MapReduce那待排序的肯定会更加实用. 先贴上源码 package examples; import java.io.DataInput; import java.io.DataOutput; import java.io.IOException; import java.text.SimpleDateFormat; import java.util.Da…
MapReduce原理及源码解读 目录 MapReduce原理及源码解读 一.分片 灵魂拷问:为什么要分片? 1.1 对谁分片 1.2 长度是否为0 1.3 是否可以分片 1.4 分片的大小 1.5 开始分片 1.6 分片后读取会不会断行 二.Map阶段 2.1 实例化Mapper 2.2 调用map()方法 三.Shuffle阶段 灵魂拷问:哪来的Shuffle? 3.1 shuffle的概念 3.2 Map端Shuffle 3.2.1 分区(partition) 3.2.2 写入环形缓冲区…