本博客是博主在学习了两篇关于 "House Prices: Advanced Regression Techniques" 的教程 (House Prices EDA 和 Comprehensive data exploration with Python )后的总结,重点在于探究如何分析真实数据的分布以及如何对数据进行预处理,同时强化 pandas 和 seaborn 包的操作技巧. 1 了解数据的基本统计信息 利用pandas读取数据: import pandas as pd im…
Kaggle: House Prices: Advanced Regression Techniques notebook来自https://www.kaggle.com/neviadomski/how-to-get-to-top-25-with-simple-model-sklearn 思路流程: 1.导入数据,查看数据结构和缺失值情况重点在于查看缺失值情况的写法:NAs = pd.concat([train.isnull().sum(), test.isnull().sum()], axis…
房价预测是我入门Kaggle的第二个比赛,参考学习了他人的一篇优秀教程:https://www.kaggle.com/serigne/stacked-regressions-top-4-on-leaderboard 通过Serigne的这篇notebook,我学习到了关于数据分析.特征工程.集成学习等等很多有用的知识,在这里感谢一下这位大佬. 本篇文章立足于Serigne的教程,将他的大部分代码实现了一遍,修正了个别小错误,也加入了自己的一些视角和思考,做了一些自认为reasonable的"改进…
一.比赛概述 不同比赛有不同的任务,分类.回归.推荐.排序等.比赛开始后训练集和测试集就会开放下载. 比赛通常持续 2 ~ 3 个月,每个队伍每天可以提交的次数有限,通常为 5 次. 比赛结束前一周是一个 Deadline,在这之后不能再组队,也不能再新加入比赛.所以想要参加比赛请务必在这一 Deadline 之前有过至少一次有效的提交. 一般情况下在提交后会立刻得到得分的反馈.不同比赛会采取不同的评分基准,可以在分数栏最上方看到使用的评分方法. 反馈的分数是基于测试集的一部分计算的,剩下的另一…
介绍 参加Kaggle比赛,我必须有哪些技能呢? 你有没有面对过这样的问题?最少在我大二的时候,我有过.过去我仅仅想象Kaggle比赛的困难度,我就感觉害怕.这种恐惧跟我怕水的感觉相似.怕水,让我无法参加一些游泳课程.然而,后来,我得到的教训是只要你不真的跨进水里,你就不知道水有多深.相同的哲学对Kaggle也一样适用.没有试过之前不要下结论.     Kaggle,数据科学的家园,为竞赛参与者,客户解决方案和招聘求职提供了一个全球性的平台.这是Kaggle的特殊吸引力,它提供的竞赛不仅让你站到…
做完 Kaggle 比赛已经快五个月了,今天来总结一下,为秋招做个准备. 题目要求:根据主办方提供的超过 4 天约 2 亿次的点击数据,建立预测模型预测用户是否会在点击移动应用广告后下载应用程序. 数据集特点: 数据量很大,有 2 亿条之多 数据是不平衡的,点击下载的数量远远小于没有点击下载的数量 不平衡数据集的处理思路: 一般对样本进行 上采样 和 下采样,顾名思义就是 多的样本少采一点,少的样本多采一点.极端情况下,就是样本太多的时候,就可以做增强学习,就是我给我的少样本增加噪音.但是由于我…
翻译来自:http://news.csdn.net/article_preview.html?preview=1&reload=1&arcid=2825492 摘要:本文解释了回归分析及其优势,重点总结了应该掌握的线性回归.逻辑回归.多项式回归.逐步回归.岭回归.套索回归.ElasticNet回归等七种最常用的回归技术及其关键要素,最后介绍了选择正确的回归模型的关键因素. [编者按]回归分析是建模和分析数据的重要工具.本文解释了回归分析的内涵及其优势,重点总结了应该掌握的线性回归.逻辑回归…
Kaggle比赛冠军经验分享:如何用 RNN 预测维基百科网络流量 from:https://www.leiphone.com/news/201712/zbX22Ye5wD6CiwCJ.html 导语:来自莫斯科的 Arthur Suilin 在比赛中夺冠并在 github 上分享了他的模型 雷锋网 AI 科技评论按:最近在 Kaggle 上有一场关于网络流量预测的比赛落下帷幕,作为领域里最具挑战性的问题之一,这场比赛得到了广泛关注.比赛的目标是预测 14 万多篇维基百科的未来网络流量,分两个阶…
文章内容均来自斯坦福大学的Andrew Ng教授讲解的Machine Learning课程,本文是针对该课程的个人学习笔记,如有疏漏,请以原课程所讲述内容为准.感谢博主Rachel Zhang 的个人笔记,为我做个人学习笔记提供了很好的参考和榜样. § 2. 多变量线性回归 Linear Regression with Multiple Variables 1 多特征值(多变量) Multiple Features(Variables) 首先,举例说明了多特征值(多变量)的情况.在下图的例子中,…
https://www.analyticsvidhya.com/blog/2015/08/comprehensive-guide-regression/ What is Regression Analysis? Why do we use Regression Analysis? What are the types of Regressions? Linear Regression Logistic Regression Polynomial Regression Stepwise Regre…
https://docs.google.com/presentation/d/e/2PACX-1vQGlXP6QZH0ATzXYwnrXinJcCn00fxCOoEczPAXU-n3hAPLUfMfie7CwW4Vk4owYPiNh6g4uc9dx757/pub?start=false&loop=false&delayms=3000&slide=id.g3149e75136_0_130 Pandas 处理 dummy variable p-value:拒绝原假设H0时犯错误的概率,…
一.EDA(Exploratory Data Analysis) EDA:也就是探索性的分析数据 目的: 理解每个特征的意义: 知道哪些特征是有用的,这些特征哪些是直接可以用的,哪些需要经过变换才能用,为之后的特征工程做准备: 1)每个特征的意义.特征的类型: df.describe() df['Category'].unique() 2)看是否存在 missing value(特征数据是否缺失) df.loc[df.Dates.isnull(),'Dates'] 3)看每个特征下的数据分布,用…
1959 拔河比赛  时间限制: 1 s  空间限制: 128000 KB  题目等级 : 黄金 Gold     题目描述 Description 一个学校举行拔河比赛,所有的人被分成了两组,每个人必须(且只能够)在其中的一组,要求两个组的人数相差不能超过1,且两个组内的所有人体重加起来尽可能地接近. 输入描述 Input Description 数据的第1行是一个n,表示参加拔河比赛的总人数,n<=100,接下来的n行表示第1到第n个人的体重,每个人的体重都是整数(1<=weight<…
之前用学生证在graphlab上申了一年的graphlab使用权(华盛顿大学机器学习课程需要)然后今天突然想到完全可以用这个东东来参加kaggle. 下午参考了一篇教程,把notebook上面的写好了 本文很多代码参考了turi官网的一个教程,有兴趣的同学可以去看原版 https://turi.com/learn/gallery/notebooks/who_survived_the_titanic.html 代码 import graphlab as gl %matplotlib inline…
泰坦尼克号幸存预测是本小白接触的第一个Kaggle入门比赛,主要参考了以下两篇教程: https://www.cnblogs.com/star-zhao/p/9801196.html https://zhuanlan.zhihu.com/p/30538352 本模型在Leaderboard上的最高得分为0.79904,排名前13%. 由于这个比赛做得比较早了,当时很多分析的细节都忘了,而且由于是第一次做,整体还是非常简陋的.今天心血来潮,就当做个简单的记录(流水账). 导入相关包: import…
背景 Titanic: Machine Learning from Disaster - Kaggle 2 年前就被推荐照着这个比赛做一下,结果我打开这个页面便蒙了,完全不知道该如何下手. 两年后,再次打开这个页面,看到清清楚楚的Titanic Tutorial - Kaggle,完全傻瓜式的照着做就能做下来.当年是什么蒙蔽了我的眼睛~ Target use machine learning to create a model that predicts which passengers sur…
逻辑回归二分类 今天尝试写了一下逻辑回归分类,把代码分享给大家,至于原理的的话请戳这里 https://blog.csdn.net/laobai1015/article/details/78113214   (在这片博客的基础上我加了一丢丢东西). 用到的预测函数为 其中,h为预测函数(大于0.5为一类,小于等于0.5为另一类).θ为各个特征的参数.θ=[θ1,θ2,θ3...]T 损失函数J(θ)为 利用梯度下降算法进行参数的更新公式如下: 其中,α是学习率参数,λ是正则项参数,需要自己输入.…
为了保护和监控海洋环境及生态平衡,大自然保护协会(The Nature Conservancy)邀请Kaggle社区的参赛者们开发能够出机器学习算法,自动分类和识别远洋捕捞船上的摄像头拍摄到的图片中鱼类的品种,例如不同种类的吞拿鱼和鲨鱼.大自然保护协会一共提供了3777张标注的图片作为训练集,这些图片被分为了8类,其中7类是不同种类的海鱼,剩余1类则是不含有鱼的图片,每张图片只属于8类中的某一类别. 图片中待识别的海鱼所占整张图片的一小部分,这就给识别带来了很大的挑战性.此外,为了衡量算法的有效…
一.模型与特征哪个重要? 参与Sberbank Russian Housing Market比赛,一开始使用sklearn的岭回归函数Ridge(),残差值一直是0.37左右,然后同样的特征又使用了XGboost,残差值降到了0.34左右,提高的还是挺显著的. 但是另外一些参赛选手,使用XGboost,残差值可以降到0.31左右.所以由此来看,xgboost模型确实厉害,效果很好. 通过比赛不断调整特征发现,特征多了未必好,少了重要特征更不行,只有留下最重要的特征,模型的残差值才会降到最低.所以…
本文首发于个人博客https://kezunlin.me/post/6b505d27/,欢迎阅读最新内容! full guide tutorial to install and configure deep learning environments on linux server Quick Guide prepare tools MobaXterm (for windows) ssh + vscode for windows: drop files to MobaXterm to uploa…
申明:此文为译文,仅供学习交流试用,请勿用作商业用途,造成一切后果本人概不负责,转载请说明.本人英语功力尚浅,翻译大多借助于翻译工具,如有失误,欢迎指正. 逻辑程序简介 逻辑程序是一组公理或规则,定义对象之间的关系.逻辑程序的计算是扣除该计划的后果的.一个程序定义了一组后果,这就是它的意义.逻辑编程的艺术是构建一个具有所需的含义简洁大方的方案. Prolog基本构造 逻辑编程,条款和声明的基本结构,从逻辑继承.有三种基本的语句:事实,规则和查询.有一个单一的数据结构:逻辑术语.最简单的一种说法叫…
1.训练模型:建bucket,建job,提交运行. BUCKET_NAME=gs://${USER}_yt8m_train_bucket_logisticmodel # (One Time) Create a storage bucket to store training logs and checkpoints. gsutil mb -l us-east1 $BUCKET_NAME # Submit the training job. JOB_NAME=yt8m_train_Logistic…
本篇博客代码来自于<动手学深度学习>pytorch版,也是代码较多,解释较少的一篇.不过好多方法在我以前的博客都有提,所以这次没提.还有一个原因是,这篇博客的代码,只要好好看看肯定能看懂(前提是python语法大概了解),这是我不加很多解释的重要原因. K折交叉验证实现 def get_k_fold_data(k, i, X, y): # 返回第i折交叉验证时所需要的训练和验证数据,分开放,X_train为训练数据,X_valid为验证数据 assert k > 1 fold_size…
原文:https://hippocampus-garden.com/kaggle_colab/ 原文标题:How to Kaggle with Colab Pro & Google Drive 译文作者:kbsc13 联系方式: Github:https://github.com/ccc013/AI_algorithm_notes 知乎专栏:机器学习与计算机视觉,AI 论文笔记 微信公众号:AI 算法笔记 前言 Colab Pro(目前仅在美国.加拿大.日本.巴西.德国.法国.印度.英国和泰国可…
https://www.quora.com/How-do-I-learn-machine-learning-1?redirected_qid=6578644   How Can I Learn X? Learning Machine Learning Learning About Computer Science Educational Resources Advice Artificial Intelligence How-to Question Learning New Things Lea…
天天跟数据打交道的研究人员,都有一个成为Kaggle顶级大师(Grandmaster)的梦想. 但每年的Kaggle参赛团队众多,通常一个项目都有数千人至上万人报名,如何在其中脱颖而出? 最近,自动化数据准备及协作平台Dataland的联合创始人Lavanya Shukla,在博客上分享了她在Kaggle竞赛中最终成为0.3%的获奖经验. 小姐姐在推特中表示,这份攻略里全都是干货,网友纷纷为其点赞.有网友表示,这份攻略非常棒,才知道脊回归如此强大! *先放上原文地址:* *https://www…
简介 Kaggle 于 2010 年创立,专注数据科学,机器学习竞赛的举办,是全球最大的数据科学社区和数据竞赛平台.笔者从 2013 年开始,陆续参加了多场 Kaggle上面举办的比赛,相继获得了 CrowdFlower 搜索相关性比赛第一名(1326支队伍)和 HomeDepot 商品搜索相关性比赛第三名(2125支队伍),曾在 Kaggle 数据科学家排行榜排名全球第十,国内第一.笔者目前在腾讯社交与效果广告部任职数据挖掘工程师,负责 Lookalike 相似人群扩展相关工作.此文分享笔者在…
 原作者:陈成龙 简介 Kaggle 于 2010 年创立,专注数据科学,机器学习竞赛的举办,是全球最大的数据科学社区和数据竞赛平台.笔者从 2013 年开始,陆续参加了多场 Kaggle上面举办的比赛,相继获得了 CrowdFlower 搜索相关性比赛第一名(1326支队伍)和 HomeDepot 商品搜索相关性比赛第三名(2125支队伍),曾在 Kaggle 数据科学家排行榜排名全球第十,国内第一.笔者目前在腾讯社交与效果广告部任职数据挖掘工程师,负责 Lookalike 相似人群扩展相关工…
文章发布于公号[数智物语] (ID:decision_engine),关注公号不错过每一篇干货. 来源 | 腾讯广告算法大赛 作者 | 陈成龙 Kaggle 于 2010 年创立,专注数据科学,机器学习竞赛的举办,是全球最大的数据科学社区和数据竞赛平台.作者从 2013 年开始,陆续参加了多场 Kaggle上面举办的比赛,相继获得了 CrowdFlower 搜索相关性比赛第一名(1326支队伍)和 HomeDepot 商品搜索相关性比赛第三名(2125支队伍),曾在 Kaggle 数据科学家排行…