MIT线性代数:22.对角化和A的幂】的更多相关文章

利用特征向量的属性,矩阵 \(A\) 可以变成一个对角化矩阵 \(\Lambda\). 1. 对角化 假设一个 \(n×n\) 的矩阵 \(A\) 有 \(n\) 个线性不相关的特征向量 \(x_1,\cdots,x_n\) ,把它们作为特征向量矩阵 \(S\) 的列,那么就有 \(S^{-1}AS=\Lambda\). 矩阵 \(A\) 被对角化了,因为所有的特征向量位于矩阵 \(\Lambda\)的对角线上. 证明过程也很简单,首先我们计算 \(AS\). 一个技巧就是将 \(AS\) 分解…
概述 个人认为线性代数从三个角度,或者说三个工具来阐述了线性关系,分别是: 向量 矩阵 空间 这三个工具有各自的一套方法,而彼此之间又存在这密切的联系,通过这些抽象出来的工具可以用来干一些实际的活,最为直接的就是解方程组,进一步衍生出来最小二乘法等等. 这一部分主要讲了三个工具的各自的一些基本方法,以及用其解方程组的一套理论.另外,由于是总结,就不按照课程的顺序,而且各点之间都有穿插. 向量(Vector) 对于向量而言,大部分与中学一致,基本的就不说了,关注重点. 线性相关性 线性相关性用于描…