1. 场景描述 一直做java,因项目原因,需要封装一些经典的算法到平台上去,就一边学习python,一边网上寻找经典算法代码,今天介绍下经典的K-means聚类算法,算法原理就不介绍了,只从代码层面进行介绍,包含:rest接口.连接mpp数据库.回传json数据.下载图片及数据. 2. 解决方案 2.1 项目套路 (1)python经典算法是单独的服务器部署,提供rest接口出来,供java平台调用,交互的方式是http+json: (2)数据从mpp数据库-Greenplum中获取: (3)…
1. 场景描述 一直做java,因项目原因,需要封装一些经典的算法到平台上去,就一边学习python,一边网上寻找经典算法代码,今天介绍下经典的相关性算法,算法原理就不介绍了,只从代码层面进行介绍,包含:rest接口.连接mpp数据库.回传json数据.下载图片及数据.(python聚类算法解决方案(rest接口/连接mpp数据库/回传json数据/下载图片及数据)) 2. 解决方案 2.1 项目套路 (1)python经典算法是单独的服务器部署,提供rest接口出来,供java平台调用,交互的…
python聚类算法实战详细笔记 (python3.6+(win10.Linux)) 一.基本概念:     1.计算TF-DIF TF-IDF是一种统计方法,用以评估一字词对于一个文件集或一个语料库中的其中一份文件的重要程度. 字词的重要性随着它在文件中出现的次数成正比增加,但同时会随着它在语料库中出现的频率成反比下降. TFIDF的主要思想是:如果某个词或短语在一篇文章中出现的频率TF高,并且在其他文章中很少出现, 则认为此词或者短语具有很好的类别区分能力,适合用来分类.TFIDF实际上是:…
Python聚类算法之基本K均值实例详解 本文实例讲述了Python聚类算法之基本K均值运算技巧.分享给大家供大家参考,具体如下: 基本K均值 :选择 K 个初始质心,其中 K 是用户指定的参数,即所期望的簇的个数.每次循环中,每个点被指派到最近的质心,指派到同一个质心的点集构成一个.然后,根据指派到簇的点,更新每个簇的质心.重复指派和更新操作,直到质心不发生明显的变化.     # scoding=utf-8 import pylab as pl points = [[int(eachpoin…
'''Urllib 模块提供了读取web页面数据的接口,我们可以像读取本地文件一样读取www和ftp上的数据.首先,我们定义了一个getHtml()函数: urllib.urlopen()方法用于打开一个URL地址. read()方法用于读取URL上的数据,向getHtml()函数传递一个网址,并把整个页面下载下来.执行程序就会把整个网页打印输出.''' # 筛选页面中想要的数据 import reimport urllib.requestdef getHtml(url): page = url…
目录 前言 SpringBoot提供后端接口 Entity类 JPA操作接口 配置文件 数据库表自动映射,添加数据 写提供数据的接口 跨域问题 前端修改 效果图 待续 前言 Vue学习笔记九的列表案例和Vue学习笔记十二vue-resource这两章结合一下,不在使用假数据了,这次从后台接口获取json数据. Vue前端框架提供交互逻辑处理 Bootstrap前端css提供美化渲染 SpringBoot后端提供接口 MySQL数据库提供数据 SpringBoot提供后端接口 由于前端第九章我都写…
聚类算法 任务:将数据集中的样本划分成若干个通常不相交的子集,对特征空间的一种划分. 性能度量:类内相似度高,类间相似度低.两大类:1.有参考标签,外部指标:2.无参照,内部指标. 距离计算:非负性,同一性(与自身距离为0),对称性,直递性(三角不等式).包括欧式距离(二范数),曼哈顿距离(一范数)等等. 1.KNN k近邻(KNN)是一种基本分类与回归方法. 其思路如下:给一个训练数据集和一个新的实例,在训练数据集中找出与这个新实例最近的k  个训练实例,然后统计最近的k  个训练实例中所属类…
K-means 原理 首先随机选择k个初始点作为质心 1. 对每一个样本点,计算得到距离其最近的质心,将其类别标记为该质心对应的类别 2. 使用归类好的样本点,重新计算K个类别的质心 3. 重复上述过程,直到质心不发生变化 距离计算方法 在K-Means算法中,需要注意的是,对于距离的计算有很多中方法: (1)闵可夫斯基距离( Minkowski ) \[d(x,y) = (\sum_{i=1}^n|x_i-y_i|^p)^{\frac{1}{p}} \] 注意这里p=2时则为常用的欧氏距离.…
1.算法简介 AP(Affinity Propagation)通常被翻译为近邻传播算法或者亲和力传播算法,是在2007年的Science杂志上提出的一种新的聚类算法.AP算法的基本思想是将全部数据点都当作潜在的聚类中心(称之为exemplar),然后数据点两两之间连线构成一个网络(相似度矩阵),再通过网络中各条边的消息(responsibility和availability)传递计算出各样本的聚类中心. 2.相关概念(假如有数据点i和数据点j)        (图1)              …
考虑到学习知识的顺序及效率问题,所以后续的几种聚类方法不再详细讲解原理,也不再写python实现的源代码,只介绍下算法的基本思路,使大家对每种算法有个直观的印象,从而可以更好的理解函数中参数的意义及作用,而重点是放在如何使用及使用的场景. (题外话: 今天看到一篇博文:刚接触机器学习这一个月我都做了什么?  里面对机器学习阶段的划分很不错,就目前而言我们只要做到前两阶段即可) 因为前两篇博客已经介绍了两种算法,所以这里的算法编号从3开始. 3.Mean-shift 1)概述 Mean-shift…