cvpr2016论文】的更多相关文章

http://openaccess.thecvf.com/ICCV2017.py http://openaccess.thecvf.com/CVPR2017.py http://www.cv-foundation.org/openaccess/CVPR2016.py http://www.cv-foundation.org/openaccess/CVPR2015.py…
字符识别OCR原理及应用实现 文本是人类最重要的信息来源之一,自然场景中充满了形形色色的文字符号.光学字符识别(OCR)相信大家都不陌生,就是指电子设备(例如扫描仪或数码相机)检查纸上打印的字符,通过检测暗.亮的模式确定其形状,然后用字符识别方法将形状翻译成计算机文字的过程. 工业场景的图像文字识别更加复杂,出现在很多不同的场合.例如医药品包装上的文字.各种钢制部件上的文字.容器表面的喷涂文字.商店标志上的个性文字等.在这样的图像中,字符部分可能出现在弯曲阵列.曲面异形.斜率分布.皱纹变形.不完…
Xiang Bai--[CVPR2016]Multi-Oriented Text Detection with Fully Convolutional Networks 目录 作者和相关链接 方法概括 方法细节 创新点和贡献 实验结果 问题讨论 总结与收获点 作者和相关链接 作者: paper下载 方法概括 Step 1--文本块检测: 先利用text-block FCN得到salient map,再对salient map进行连通分量分析得到text block: Step 2--文本线形成:…
CVPR2016: You Only Look Once:Unified, Real-Time Object Detection 转载请注明作者:梦里茶 YOLO,You Only Look Once,摒弃了RCNN系列方法中的region proposal步骤,将detection问题转为一个回归问题 网络结构 输入图片:resize到448x448 整张图片输入卷积神经网络(24层卷积+2层全连接,下面这张示意图是Fast YOLO的) 将图片划分为SxS个格子,S=7 输出一个SxS大小的…
论文源址:https://arxiv.org/abs/1605.06409 开源代码:https://github.com/PureDiors/pytorch_RFCN 摘要 提出了基于区域的全卷积网络,用于精确高效的目标检测,相比于基于区域的检测器(Fast/Faster R-CNN),这些检测器重复的在子区域进行数百次计算,而本文在整张图像上进行共享计算.因此,本文提出了基于位置敏感分数图用于解决图像分类中的平移不变性及目标检测中的平移可变性之间的矛盾.将图像分类网络处理为全卷积网络用于目标…
论文源址:https://arxiv.org/abs/1612.08242 代码:https://github.com/longcw/yolo2-pytorch 摘要 本文提出YOLO9000可以检测9000多个类别.改进的YOLOv2在VOC与COCO数据集上表现较好.通过使用多尺寸的训练方法,同一个YOLOv2模型可以在多尺寸上进行实现,准确率与速度上得到很好的权衡.超过了基于ResNet的Faster R-CNN和SSD.提出了标检测及分类的联合训练方法.基于此方法,同时,在COCO检测数…
论文源址:https://arxiv.org/abs/1606.02147 tensorflow github: https://github.com/kwotsin/TensorFlow-ENet 摘要 在移动端上进行实时的像素级分割十分重要.基于分割的深度神经网络中存在大量的浮点运算而且需要经过较长的时间才可以进行投入使用.该文提出的ENet目的是减少潜在的计算.ENet相比现存的分割网络,速度快18倍,参数量要少79倍,同时分割得到的准确率不有所损失,甚至有所提高. 介绍 目前,增强现实可…
论文源址:https://arxiv.org/pdf/1612.01105.pdf tensorflow代码:https://github.com/hellochick/PSPNet-tensorflow 基于PSPNet101的钢铁分割实验:https://github.com/fourmi1995/IronSegExperiment-PSPNet 摘要 对于不非特殊条件的场景解析仍十分困难.该文利用金字塔池化模型,融合了图像中不同区域的上下文信息. 介绍 分割可以预测完全理解场景,预测标签,…
论文链接:https://arxiv.org/pdf/1611.09326.pdf tensorflow代码:https://github.com/HasnainRaz/FC-DenseNet-TensorFlow 实验代码:https://github.com/fourmi1995/IronSegExperiment-FC-DenseNet.git 摘要 经典的分割结构大致由以下部分构成:(1)用于提取粗略特征的下采样过程.(2)可训练的上采样通道,用于将模型的输出至输入图片大小的分辨率.(3…
论文链接:https://arxiv.org/pdf/1606.00915.pdf 摘要 该文主要对基于深度学习的分割任务做了三个贡献,(1)使用空洞卷积来进行上采样来进行密集的预测任务.空洞卷积可以在不增加参数量的基础上增大filter的感受野,从而可以得到更多的语义信息.(2)空洞空间金字塔池化结构(ASPP)从而以多尺寸来分割目标物体.通过不同sample rates的filters及不同大小的感受野,来获得多尺寸下的语义信息.(3)结合DCNN与概率模型提高物体的检测边界.DCNNs+C…