二叉搜索树、B树】的更多相关文章

树-二叉搜索树-AVL树 树 树的基本概念 节点的度:节点的儿子数 树的度:Max{节点的度} 节点的高度:节点到各叶节点的最大路径长度 树的高度:根节点的高度 节点的深度(层数):根节点到该节点的路径长度 树的遍历 ·前序遍历:根左右(x,Tl,Tr) ·中序遍历:左根右(Tl,x,Tr) ·后序遍历:左右根(Tl,Tr,x) 树的表示法 1.父节点数组表示法 (寻找父节点O(1),寻找儿子节点O(n)) 2.儿子链表表示法 (为克服找父节点不方便,可牺牲空间换时间:) 3.左儿子右兄弟表示法…
AVL树的基本概念 AVL树是一种高度平衡的(height balanced)二叉搜索树:对每一个结点x,x的左子树与右子树的高度差(平衡因子)至多为1. 有人也许要问:为什么要有AVL树呢?它有什么作用呢? 我们先来看看二叉搜索树吧(因为AVL树本质上是一棵二叉搜索树),假设有这么一种极端的情况:二叉搜索树结点的插入顺序为1,2,3,4,5,也就是: 显而易见,这棵二叉搜索树已经其退化成一个链表了,也就是说,它在查找上的优势已经全无了—— 在这种情况下,查找一个结点的时间复杂度是O(n)! 如…
二叉搜索树 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 6293    Accepted Submission(s): 2820 Problem Description 判断两序列是否为同一二叉搜索树序列   Input 开始一个数n,(1<=n<=20) 表示有n个需要判断,n= 0 的时候输入结束.接下去一行是一个序列,序列长度…
1.定义 对于每个节点X,它的左子树中所有的项的值小于X的值,右子树所有项的值大于X的值. 如图:任意一个节点,都满足定义,其左子树的所有值小于它,右子树的所有值大于它. 2.平均深度 在大O模型中,二叉查找树的平均深度是O(logN) . 证明:查找某个节点x的算法深度,即从根出发找到节点x的路径长.所有查找的平均深度,就是平均内部路径长. 假设二叉查找树共N个节点,假设左子树有i个节点,则右子树节点数目:N-i-1. 假设D(N)表示具有N个基点的内部路径长.则N个节点的树的内部路径长:D(…
题目 A Binary Search Tree (BST) is recursively defined as a binary tree which has the following properties: The left subtree of a node contains only nodes with keys less than the node's key. The right subtree of a node contains only nodes with keys gre…
03-树1. List Leaves (25) Given a tree, you are supposed to list all the leaves in the order of top down, and left to right. Input Specification: Each input file contains one test case. For each case, the first line gives a positive integer N (<=10) wh…
二叉搜索树又叫二叉排序树. B树又可写为B-树,“B-树”种的“-”无区分意义. 此外,还有B+树,B*树.…
数据结构中常见的树(BST二叉搜索树.AVL平衡二叉树.RBT红黑树.B-树.B+树.B*树) 二叉排序树.平衡树.红黑树 红黑树----第四篇:一步一图一代码,一定要让你真正彻底明白红黑树 --- 很好…
树&二叉树 树是由节点和边构成,储存元素的集合.节点分根节点.父节点和子节点的概念. 二叉树binary tree,则加了"二叉"(binary),意思是在树中作区分.每个节点至多有两个子(child),left child & right child. 二叉搜索树 BST 顾名思义,二叉树上又加了个搜索的限制.其要求:每个节点比其左子树元素大,比其右子树元素小.…
什么也不说了,直接上代码. 首先是节点类,大家都懂得 /** * 二叉树的节点类 * * @author HeYufan * * @param <T> */ class Node<T extends Comparable<? super T>> { /** * 节点储存的值 */ private T data; /** * 左子节点 */ private Node<T> leftNode; /** * 右子节点 */ private Node<T>…