链接 看了几小时也没看懂代码表示的何意..无奈下来问问考研舍友. 还是考研舍友比较靠谱,分分钟解决了我的疑问. 可能三维的东西在纸面上真的不好表示,网上没有形象的题解,只有简单"明了"的讲解. 这题说起来很简单,求下三维凸包,枚举每一个面,进行坐标旋转,使得当前面作为xoy面时的其他坐标,然后求下投影面的凸包的面积. 为什么要旋转面而不直接算点到面的距离,是因为投影的面积没有办法算. 面旋转时是怎么旋转的,首先求得当前面的法向量p1,再求得它与向量e(0,0,1)的法向量pp,所有的点…
链接 模板题已不叫题.. 三维凸包+凸包重心+点到平面距离(体积/点积)  体积-->混合积(先点乘再叉乘) #include <iostream> #include<cstdio> #include<cstring> #include<algorithm> #include<stdlib.h> #include<vector> #include<cmath> #include<queue> #inclu…
新模板 /* HDU 4273 Rescue 给一个三维凸包,求重心到表面的最短距离 模板题:三维凸包+多边形重心+点面距离 */ #include<stdio.h> #include<algorithm> #include<string.h> #include<math.h> #include<stdlib.h> using namespace std; ; ; struct Point { double x,y,z; Point(){} Po…
也是用模板直接套的题目诶 //#pragma comment(linker, "/STACK:16777216") //for c++ Compiler #include <stdio.h> #include <iostream> #include <cstring> #include <cmath> #include <stack> #include <queue> #include <vector>…
Luogu 4724 三维凸包 增量法,维护当前凸包,每次加入一个点 \(P\) ,视其为点光源,将可见面删去,新增由"晨昏线"(分割棱)与 \(P\) 构成的平面. 注意每个平面表面积为其三个端点算出的法向量模长一半. 参考讲解. #include<bits/stdc++.h> using namespace std; #define ll long long #define pii pair<int,int> inline int read() { int…
Ultimate Weapon Time Limit: 2000MS   Memory Limit: 131072K Total Submissions: 2430   Accepted: 1173 Description In year 2008 of the Cosmic Calendar, the Aliens send a huge armada towards the Earth seeking after conquest. The humans now depend on thei…
题面 传送门 题解 我对计蒜几盒一无所知 顺便\(xzy\)巨巨好强 前置芝士 三维凸包 啥?你不会三维凸包?快去把板子写了->这里 欧拉公式 \[V-E+F=2\] \(V:vertex\)顶点,\(E:edge\)边,\(F:flat\)面,对所有维度的所有多边形(多面体)都成立 圆的反演 设反演中心为\(O\),常数为\(k\),若经过\(O\)的直线经过\(P,P'\),且\(OP\times OP'=k\),则称\(P,P'\)关于\(O\)互为反演,其中\(O\)为反演中心,\(k\…
POJ3528 HDU3662 第一道题 给定若干点 求凸包的表面积,第二题 给定若干点就凸包的面数. 简单说一下三维凸包的求法,首先对于4个点假设不共面,确定了唯一四面体,对于一个新的点,若它不在四面体内,为了让它进入凸包, 则对于所有凸包上的边,若边的一面是该点可以看到的而另一面看不到,则该点与该边构成的面要加入凸包. 模板代码非常清晰, #include<stdio.h> #include<algorithm> #include<string.h> #includ…
洛谷P4724 [模板]三维凸包 给出空间中 \(n\) 个点 \(p_i\),求凸包表面积. 数据范围:\(1\le n\le 2000\). 这篇题解因为是世界上最逊的人写的,所以也会有求凸包体积的讲解. 三位向量的运算 模长: 即向量长度,\(|\vec{a}|=\sqrt{x_a^2+y_a^2+z_a^2}\). 点积: 标量 \(\vec{a}\cdot\vec{b}=|\vec{a}||\vec{b}|\cos<\vec{a},\vec{b}>=x_ax_b+y_ay_b+z_a…
题意: 两个凸多面体,可以任意摆放,最多贴着,问他们重心的最短距离. 解法: 由于给出的是凸多面体,先构出两个三维凸包,再求其重心,求重心仿照求三角形重心的方式,然后再求两个多面体的重心到每个多面体的各个面的最短距离,然后最短距离相加即为答案,因为显然贴着最优. 求三角形重心见此: http://www.cnblogs.com/whatbeg/p/4234518.html 代码:(模板借鉴网上模板) #include <iostream> #include <cstdio> #in…