51nod 1103 N的倍数 (鸽巢原理)】的更多相关文章

题意:有两个长度为n的排列p和s.要求通过交换使得p变成s.交换 pi 和 pj 的代价是|i-j|.要求使用最少的代价让p变成s. 考虑两个数字pi和pj,假如交换他们能使得pi到目标的距离减少,pj到目标的距离减少.那么应该交换他们,这是一个必要的操作,也是答案的下界. 如果每一次都能找到这样的两个数字,那么答案就是排列p中的每个数字在排列s的位置的距离差之和/2.这显然是答案的下界. 现在考虑证明这个下界是可以构造出来的. 考虑排列p中最后一个位置不对的数字,不妨设为pj,他的目标位置是p…
1103 N的倍数 题目来源: Ural 1302 基准时间限制:1 秒 空间限制:131072 KB 分值: 40 难度:4级算法题  收藏  关注 一个长度为N的数组A,从A中选出若干个数,使得这些数的和是N的倍数. 例如:N = 8,数组A包括:2 5 6 3 18 7 11 19,可以选2 6,因为2 + 6 = 8,是8的倍数.   Input 第1行:1个数N,N为数组的长度,同时也是要求的倍数.(2 <= N <= 50000) 第2 - N + 1行:数组A的元素.(0 <…
思路: 这道题嘛有些弯还是要转的,比如你说让你搞n的倍数,你别老老实实照她的意思去啊,倍数可以除法,取膜 . 因为n个数我们可以求前缀和然后取膜,对n取膜的话有0-n-1种情况,所以方案一定是有的,说的好听一点就是因为鸽巢原理,如果取膜=0那直接输出,如果有两种相等的,减一下输出就好了,一定会存在,而且不用判没有情况的.)虽然我判了... #include <stdio.h> #include <string.h> #include <iostream> using n…
1103 N的倍数 题目来源: Ural 1302 基准时间限制:1 秒 空间限制:131072 KB 分值: 40 难度:4级算法题 一个长度为N的数组A,从A中选出若干个数,使得这些数的和是N的倍数. 例如:N = 8,数组A包括:2 5 6 3 18 7 11 19,可以选2 6,因为2 + 6 = 8,是8的倍数.   Input 第1行:1个数N,N为数组的长度,同时也是要求的倍数.(2 <= N <= 50000) 第2 - N + 1行:数组A的元素.(0 < A[i] &…
Find a multiple Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 7192   Accepted: 3138   Special Judge Description The input contains N natural (i.e. positive integer) numbers ( N <= 10000 ). Each of that numbers is not greater than 15000…
Description The input contains N natural (i.e. positive integer) numbers ( N <= ). Each of that numbers . This numbers are not necessarily different (so it may happen that two or more of them will be equal). Your task <= few <= N ) so that the su…
/* 引用过来的 题意: 给出N个数,问其中是否存在M个数使其满足M个数的和是N的倍数,如果有多组解, 随意输出一组即可.若不存在,输出 0. 题解: 首先必须声明的一点是本题是一定是有解的.原理根据抽屉原理: 因为有n个数,对n个数取余,如果余数中没有出现0,根据鸽巢原理,一定有两个数的余数相同, 如果余数出现0,自然就是n的倍数.也就是说,n个数中一定存在一些数的和是n的倍数. 本题的思路是从第一个数开始一次求得前 i(i <= N)项的和关于N的余数sum,并依次记录相应余数的存在状态,…
死神来了 时间限制:1000 ms  |  内存限制:65535 KB 难度:3 描述 有一天,王小子在遨游世界时,遇到了一场自然灾害.一个人孤独的在一个岛上,没有吃的没有喝的.在他饥寒交迫将要死亡时,死神来了.由于这个死神在成神之前是一个数学家,所以他有一个习惯,会和即死之人玩一个数学游戏,来决定是否将其灵魂带走.游戏规则是死神给王小子两个整数n(100<=n<=1000000),m(2<=m<=n),在1~n个数中,随机取m个数,问在这m个数中是否一定存在一个数是另一个数的倍数…
题意:给你N个数,从中取出任意个数的数 使得他们的和 是 N的倍数: 在鸽巢原理的介绍里面,有例题介绍:设a1,a2,a3,……am是正整数的序列,试证明至少存在正数k和l,1<=k<=l<=m,是的和ak+ak+1+……+al是m的倍数,接下来开始证明: 构造一个序列s1=a1,s2=a1+a2,……,sm=a1+a2+……+am,那么会产生两种可能: 1:若有一个sn是m的倍数,那么定理成立: 2:假设上述的序列中没有任何一个元素是m的倍数,令rh ≡ sh mod m;其中h=1,…
参考:https://www.cnblogs.com/ACShiryu/archive/2011/08/09/poj2356.html 鸽巢原理??? 其实不用map但是习惯了就打的map 以下C-c自参考博客: 我们可以依次求出a[0],a[0]+a[1],a[0]+a[1]+a[2],......,a[0]+a[1]+a[2]...+a[n]: 假设分别是sum[0],sum[1],sum[2],......,sum[n] 如果在某一项存在是N的倍数,则很好解,即可直接从第一项开始直接输出答…