前言 今天记录一下深度学习的另外一个入门项目——<mnist数据集手写数字识别>,这是一个入门必备的学习案例,主要使用了tensorflow下的keras网络结构的Sequential模型,常用层的Dense全连接层.Activation激活层和Reshape层.还有其他方法训练手写数字识别模型,可以基于pytorch实现的,<Pytorch实现基于卷积神经网络的面部表情识别(详细步骤)> 这篇就是基于pytorch实现,pytorch里也封装了mnist的数据集,实现方法应该类似…
dataset.py ''' 准备数据集 ''' import torch from torch.utils.data import DataLoader from torchvision.datasets import MNIST from torchvision.transforms import ToTensor,Compose,Normalize import torchvision import config def mnist_dataset(train): func = torch…
深度学习之 mnist 手写数字识别 开始学习深度学习,先来一个手写数字的程序 import numpy as np import os import codecs import torch from PIL import Image lr = 0.01 momentum = 0.5 epochs = 10 def get_int(b): return int(codecs.encode(b, 'hex'), 16) def read_label_file(path): with open(pa…
今天我们的主角是keras,其简洁性和易用性简直出乎David 9我的预期.大家都知道keras是在TensorFlow上又包装了一层,向简洁易用的深度学习又迈出了坚实的一步. 所以,今天就来带大家写keras中的Hello World , 做一个手写数字识别的cnn.回顾cnn架构: 我们要处理的是这样的灰度像素图: 我们先来看跑完的结果(在Google Colab上运行): x_train shape: (60000, 28, 28, 1) 60000 train samples 10000…
上一节,我们已经学会了基于PyTorch深度学习框架高效,快捷的搭建一个神经网络,并对模型进行训练和对参数进行优化的方法,接下来让我们牛刀小试,基于PyTorch框架使用神经网络来解决一个关于手写数字识别的计算机视觉问题,评价我们搭建的模型的标准是它是否能准确的对手写数字图片进行识别. 其具体的过程是:先使用已经提供的训练数据对搭建好的神经网络模型进行训练并完成参数优化,然后使用优化好的模型对测试数据进行预测,对比预测值和真实值之间的损失值,同时计算出结果预测的准确率.在将要搭建的模型中会使用到…
上篇文章我们给出了用paddlepaddle来做手写数字识别的示例,并对网络结构进行到了调整,提高了识别的精度.有的同学表示不是很理解原理,为什么传统的机器学习算法,简单的神经网络(如多层感知机)都可以识别手写数字,我们要采用卷积神经网络CNN来进行别呢?CNN到底是怎么识别的?用CNN有哪些优势呢?我们下面就来简单分析一下.在讲CNN之前,为避免完全零基础的人看不懂后面的讲解,我们先简单回顾一下传统的神经网络的基本知识. 神经网络的预备知识      为什么要用神经网络? 特征提取的高效性.…
摘要:想了解深度学习却又无从下手,不如从手写数字识别模型训练开始吧! 深度学习作为机器学习分支之一,应用日益广泛.语音识别.自动机器翻译.即时视觉翻译.刷脸支付.人脸考勤--不知不觉,深度学习已经渗入到我们生活中的每个角落,给生活带来极大便利.即便如此,依然有很多人觉得深度学习高深莫测.遥不可及,的确,它有深奥之处,非专业人士难以企及,但也有亲和力十足的一面,让没有基础的小白也能轻松上手,感受深度学习的魅力,接下来要介绍的手写数字识别模型训练正是如此. 手写数字识别初探 手写数字识别是计算机视觉…
上周在搜索关于深度学习分布式运行方式的资料时,无意间搜到了paddlepaddle,发现这个框架的分布式训练方案做的还挺不错的,想跟大家分享一下.不过呢,这块内容太复杂了,所以就简单的介绍一下paddlepaddle的第一个"hello word"程序----mnist手写数字识别.下一次再介绍用PaddlePaddle做分布式训练的方案.其实之前也写过一篇用CNN识别手写数字集的文章,是用keras实现的,这次用了paddlepaddle后,正好可以简单对比一下两个框架的优劣.  …
用MXnet实战深度学习之一:安装GPU版mxnet并跑一个MNIST手写数字识别 http://phunter.farbox.com/post/mxnet-tutorial1 用MXnet实战深度学习之二:Neural art http://phunter.farbox.com/post/mxnet-tutorial2…
目录 神经网络的卷积.池化.拉伸 LeNet网络结构 LeNet在MNIST数据集上应用 参考资料 LeNet是卷积神经网络的祖师爷LeCun在1998年提出,用于解决手写数字识别的视觉任务.自那时起,CNN的最基本的架构就定下来了:卷积层.池化层.全连接层.如今各大深度学习框架中所使用的LeNet都是简化改进过的LeNet-5(-5表示具有5个层),和原始的LeNet有些许不同,比如把激活函数改为了现在很常用的ReLu. 神经网络的卷积.池化.拉伸 前面讲了卷积和池化,卷积层可以从图像中提取特…