DZY Loves Math 系列详细题解】的更多相关文章

BZOJ 3309: DZY Loves Math I 题意 \(f(n)\) 为 \(n\) 幂指数的最大值. \[ \sum_{i = 1}^{a} \sum_{j = 1}^{b} f(\gcd(i, j)) \] \(T\le 10000, 1 \le a,b \le 10^7\) 题解 \[ \begin{aligned} ans &= \sum_{i = 1}^{a} \sum_{j = 1}^{b} f(\gcd(i, j)) \\ &= \sum_{d = 1}^{\min…
为了让自己看起来有点事干 ,做个套题吧..不然老是东翻翻西翻翻也不知道在干嘛... \(\bf 3309: DZY \ Loves \ Math\) 令 \(h=f*\mu\) 很明显题目要求的就是\[\sum_{i=1}^{min(n,m)}h(i) \cdot \left \lfloor \frac{n}{i} \right \rfloor \left \lfloor \frac{m}{i} \right \rfloor\] 那个 \(*\) 就是狄利克雷卷积,虽然说我也不知道是不是这么写.…
link 好久没写数学题了,再这样下去吃枣药丸啊. 找一套应该还比较有意思的数学题来做. [bzoj3309]DZY Loves Math 简单推一下. \[\sum_{i=1}^n\sum_{j=1}^mf(\gcd(i,j))\\=\sum_{d=1}^nf(d)\sum_{i=1}^{n/d}\mu(i)\frac n{id}\frac m{id}\\=\sum_{T=1}^n\frac nT\frac mT\sum_{d|T}f(d)\mu(\frac Td)\] 令\(h(T)=\su…
⑤(BZOJ 3560) $\Sigma_{i_1|a_1}\Sigma_{i_2|a_2}\Sigma_{i_3|a_3}\Sigma_{i_4|a_4}...\Sigma_{i_n|a_n}\phi(i_1i_2i_3i_4...i_n)$$\phi()$是积性函数$\phi(p^k)=p^{k-1}*(p-1)$设当前质数为p,对于第i个数,假设它分解质因数后p的次数为ai,那么p的答案就是$[(1+p^1+...+p^{a1})(1+p^1+...+p^{a2})...(1+p^1+..…
(14.10.28改) 本来只想写BZOJ3739:DZY Loves Math VIII的,不过因为和VI有关系,而且也没别人写过VI的题解,那么写下. 不过我还不会插公式…… http://www.lydsy.com/JudgeOnline/problem.php?id=3561 想想还是要把代码放一下的,不然可能一辈子都不会写了= = 为什么那么像FancyCoder写的呢……因为这题本来就是他教我哒……读入优化快速筛甚至快速幂的模板都是他的= = 额Mobius反演系列问题的入门也是看J…
3512: DZY Loves Math IV 题意:求\(\sum_{i=1}^n \sum_{j=1}^m \varphi(ij)\),\(n \le 10^5, m \le 10^9\) n较小,考虑写成前缀和的形式,计算\(S(n,m)=\sum_{i=1}^m \varphi(in)\) 一开始想出 \[ n= \prod_i p_i,\ \varphi(in) = \varphi(i) \cdot \varphi(\frac{n}{d})\cdot d,\ d=(n,i) \] 比较…
题链: http://www.lydsy.com/JudgeOnline/problem.php?id=3309 题解: 莫比乌斯反演,线筛 化一化式子: f(x)表示x的质因子分解中的最大幂指数 $\sum_{i=1}^n \sum_{j=1}^m f(gcd(i,j))$ $\quad\quad=\sum_{g=1}^{n}f(g)\sum_{d=1}^{\lfloor \frac{n}{g} \rfloor} \mu(d)\lfloor \frac{n}{gd} \rfloor\lfloo…
[BZOJ3561]DZY Loves Math VI (数论) 题面 BZOJ 题解 \[\begin{aligned} ans&=\sum_{i=1}^n\sum_{j=1}^m\sum_{d=1}^n[gcd(i,j)=d](\frac{ij}{d})^d\\ &=\sum_{d=1}^nd^d\sum_{i=1}^{n/d}\sum_{j=1}^{m/d}[gcd(i,j)=1]i^dj^d\\ &=\sum_{d=1}^nd^d\sum_{i=1}^{n/d}\sum_{…
[BZOJ3309]DZY Loves Math(莫比乌斯反演) 题面 求 \[\sum_{i=1}^a\sum_{j=1}^bf(gcd(a,b))\] 其中,\(f(x)\)表示\(x\)分解质因数之后,最高的幂次 题解 完全不会莫比乌斯反演了. 先来推式子 \[\sum_{d=1}^a\sum_{i=1}^{a/d}\sum_{j=1}^{b/d}[gcd(i,j)=1]f(d)\] \[\sum_{d=1}^af(d)\sum_{i=1}^{a/d}\sum_{j=1}^{b/d}[gc…
[BZOJ3512]DZY Loves Math IV(杜教筛) 题面 BZOJ 求 \[\sum_{i=1}^n\sum_{j=1}^m\varphi(ij)\] 其中\(n\le 10^5,m\le 10^9\). 题解 这个数据范围很有意思. \(n\)的值足够小,所以我们可以直接暴力枚举\(n\). 那么所求: \[S(n,m)=\sum_{i=1}^m\varphi(ni)\] 考虑如何将\(\varphi\)给拆开,因为\(\varphi\)只有每个质因子第一次出现的时候才会特殊计算…