1:“物尽其用”,但给spark分配多个机器后,先需配置spark-submit shell如下: /usr/local/spark/bin/spark-submit \ --class com.spark.test.Top3UV \ --num-executors 3 \ --driver-memory 100m \ --executor-memory 100m \ --executor-cores 3 \ --files /usr/local/hive/conf/hive-site.xml…
1. pdflush刷新脏数据条件 (linux IO 内核参数调优 之 原理和参数介绍)上一章节讲述了IO内核调优介个重要参数参数. 总结可知cached中的脏数据满足如下几个条件中一个或者多个的时候就会被pdflush刷新到磁盘: (1)数据存在的时间超过了dirty_expire_centisecs(默认30s)时间 (2)脏数据所占内存 /(MemFree + Cached - Mapped) > dirty_background_ratio.也就是说当脏数据所占用的内存占(MemFre…
http://backend.blog.163.com/blog/static/2022941262013112081215609/ http://blog.csdn.net/icycode/article/category/5966733 http://blog.sina.cn/dpool/blog/s/blog_b374c0f30102wboi.html         1. pdflush刷新脏数据条件 (linux IO 内核参数调优 之 原理和参数介绍)上一章节讲述了IO内核调优介个重…
tcp_tw_recycle参数引发的故障 By Eric 故障描述: 2010年9月7日,新上线的手机游戏论坛有部分地区用户反应登陆游戏时出现不能登陆或登陆超时等情况,观察用户同时在线数量开始下降情况. 排错过程: 一.初步检查是否有变更导致的故障:   1.联系同事检查网络是否有问题或有对该机房网络是否有进行过调整,反回结果是没有变更操作. 2.检查在这个时间点是否有进行程序发布更新,或程序是否有作用户限制处理,反馈只进行日志调低的变更,但此类操作不影响用户的正常登陆和操作. 3.检查系统,…
1.代码中尽量避免group by函数,如果需要数据聚合,group形式的为rdd.map(x=>(x.chatAt(0),x)).groupbyKey().mapValues((x=>x.toSet.size)).collection() 改为 rdd.map(x=>(x.chatAt(0),x)).countByKey();或进行reduceByKey,效率会提高3倍. 2.parquet存储的文件格式查询会比sequenceFile快两倍以上,当然这是在select * from的…
脚本优化-参数化之Parameter List参数同行取值 by:授客 QQ:1033553122 select next row 记录选择方式 Same line as,这个选项只有当参数多余一个时才会出现,其作用是根据某一个参数的行号取同一行. 例中的做法如下: 将多个参数存放在一个参数文件中:新建两个参数NewParam1和NewParam2.分别打开NewParam1和NewParam2的文件指向,将这两个参数的文件都指向NewParma.dat,即必须指向同一个文件. 然后设置NewP…
脚本优化-参数化之Parameter List参数取值 by:授客 QQ:1033553122 参数取值选项 Select next row Update value on 以上两个选项是改变参数化取值的关键选项. Select next row包含如下选项: Sequential:顺序选择 Random:随机取值 Unique:唯一值 Update value on包含以下选项: Each iteration:每次迭代更新. Each occurrence:每次取值更新 Once:只更新一次…
原文链接:http://isky000.com/database/mysql-perfornamce-tuning-cache-parameter 数据库属于 IO 密集型的应用程序,其主要职责就是数据的管理及存储工作.而我们知道,从内存中读取一个数据库的时间是微秒级别,而从一块普通硬盘上读取一个IO是在毫秒级别,二者相差3个数量级.所以,要优化数据库,首先第一步需要优化的就是 IO,尽可能将磁盘IO转化为内存IO.本文先从 MySQL 数据库IO相关参数(缓存参数)的角度来看看可以通过哪些参数…
  spark优化:在一定范围之内,增加资源与性能的提升是成正比的. 因此,       一个cpu core  执行一个task线程. task数: 若有 cpu core 2个.num-executor 2个  那么task有4个 公式:task =  num-executor * cpu core .   cpu core  共有50个.一个程序一般设置为总数量的1/3或1/2   driver : 分配task 到每个work                        从yarn申请…
一.Shuffle优化项 1.Shuffle优化配置 - spark.shuffle.file.buffer 默认值:32k 参数说明:该参数用于设置shuffle write task的BufferedOutputStream的buffer缓冲大小.将数据写到磁盘文件之前,会先写入buffer缓冲中,待缓冲写满之后,才会溢写到磁盘. 调优建议:如果作业可用的内存资源较为充足的话,可以适当增加这个参数的大小(比如64k),从而减少shuffle write过程中溢写磁盘文件的次数,也就可以减少磁…