使用Flume消费Kafka数据到HDFS】的更多相关文章

1.概述 对于数据的转发,Kafka是一个不错的选择.Kafka能够装载数据到消息队列,然后等待其他业务场景去消费这些数据,Kafka的应用接口API非常的丰富,支持各种存储介质,例如HDFS.HBase等.如果不想使用Kafka API编写代码去消费Kafka Topic,也是有组件可以去集成消费的.下面笔者将为大家介绍如何使用Flume快速消费Kafka Topic数据,然后将消费后的数据转发到HDFS上. 2.内容 在实现这套方案之间,可以先来看看整个数据的流向,如下图所示: 业务数据实时…
spark streaming从指定offset处消费Kafka数据 -- : 770人阅读 评论() 收藏 举报 分类: spark() 原文地址:http://blog.csdn.net/high2011/article/details/53706446 首先很感谢原文作者,看到这篇文章我少走了很多弯路,转载此文章是为了保留一份供复习用,请大家支持原作者,移步到上面的连接去看,谢谢 一.情景:当Spark streaming程序意外退出时,数据仍然再往Kafka中推送,然而由于Kafka默认…
1. 完成的场景 在很多大数据场景下,要求数据形成数据流的形式进行计算和存储.上篇博客介绍了Flink消费Kafka数据实现Wordcount计算,这篇博客需要完成的是将实时计算的结果写到redis.当kafka从其他端获取数据立刻到Flink计算,Flink计算完后结果写到Redis,整个过程就像流水一样形成了数据流的处理 2. 代码 添加第三方依赖 <dependencies> <!-- https://mvnrepository.com/artifact/org.apache.fl…
本文介绍flume读取kafka数据的方法 代码: /*******************************************************************************  * Licensed to the Apache Software Foundation (ASF) under one  * or more contributor license agreements.  See the NOTICE file  * distributed wi…
cd /usr/local/flume/conf vim flume-exec-total.conf ## Explain #通过sink把数据分别输出到kafka和HDFS上 # Name the components on this agent agent.sources = r1 agent.sinks = k1 k2 agent.channels = c1 c2 # Describe/configuration the source agent.sources.r1.type = exe…
1. hbase sink介绍 1.1 HbaseSink 1.2 AsyncHbaseSink 2. 配置flume 3. 运行测试flume 4. 使用RegexHbaseEventSerializer来处理些HBASE的值 5. 效率测试 1. hbase sink介绍 如果还不了解flume请查看我写的其他flume下的博客. 接下来的内容主要来自flume官方文档的学习. 顺便也强烈推荐flume 1.6 官方API hbase的sink主要有以下两种.两种方式都提供和HBASE一样的…
强大的功能,丰富的插件,让logstash在数据处理的行列中出类拔萃 通常日志数据除了要入ES提供实时展示和简单统计外,还需要写入大数据集群来提供更为深入的逻辑处理,前边几篇ELK的文章介绍过利用logstash将kafka的数据写入到elasticsearch集群,这篇文章将会介绍如何通过logstash将数据写入HDFS 本文所有演示均基于logstash 6.6.2版本 数据收集 logstash默认不支持数据直接写入HDFS,官方推荐的output插件是webhdfs,webhdfs使用…
package com.gm.hive.SparkHive; import java.util.Arrays; import java.util.Collection; import java.util.HashMap; import java.util.List; import java.util.Map; import java.util.Properties; import org.apache.kafka.clients.consumer.ConsumerRecord; import o…
对于基于Receiver 形式,我们可以通过配置 spark.streaming.receiver.maxRate 参数来限制每个 receiver 每秒最大可以接收的记录的数据:对于 Direct Approach 的数据接收,我们可以通过配置 spark.streaming.kafka.maxRatePerPartition 参数来限制每次作业中每个 Kafka 分区最多读取的记录条数. 这种限速的弊端很明显,比如假如我们后端处理能力超过了这个最大的限制,会导致资源浪费.需要对每个spark…
使用场景 Spark Streaming实时消费kafka数据的时候,程序停止或者Kafka节点挂掉会导致数据丢失,Spark Streaming也没有设置CheckPoint(据说比较鸡肋,虽然可以保存Direct方式的offset,但是可能会导致频繁写HDFS占用IO),所以每次出现问题的时候,重启程序,而程序的消费方式是Direct,所以在程序down掉的这段时间Kafka上的数据是消费不到的,虽然可以设置offset为smallest,但是会导致重复消费,重新overwrite hive…