一般情况下我们从一堆数据中选择我们获取想要的数据会通过一下方式: (1)创建链表或数组: (2)用for 循环遍历所有数据,将想要的存入链表或数组. 但是python中我们不需要这么做,我们可以用Pandas库帮我们解决这个问题:具体使用看实例: import numpy as np import pandas as pd from time import time from IPython.display import display # 允许为DataFrame使用display() imp…
pandas大家用的都很多,像我这种用的不够熟练,也不够多的就只能做做笔记,尽量留下点东西吧. 筛选行: a. 按照列的条件筛选 df = pandas.DataFrame(...) # supposing it has 3 columns: a, b and c df[(df['a'] > 0) & (df['b'] < 0) | df['c'] > 0] b. 按照索引的条件筛选 needed_seq=[1,2,3,6] needed_df = df.loc[needed_s…
在使用pandas进行条件筛选时,使用了如下的代码: fzd_index=data[(data['实际辐照度']<mi)or(data['实际辐照度']>ma)].index 原本以为,并没有太大的问题.但是出现了ValueError: The truth value of a Series is ambiguous. Use a.empty, a.bool(), a.item(), a.any() or a.all().” 这样的报错. 正确方式: fzd_index=data[(data.…
数据框(Dataframe)作为一种十分标准的数据结构,是数据分析中最常用的数据结构,在Python和R中各有对数据框的不同定义和操作. Python 本文涉及Python数据框,为了更好的视觉效果,使用jupyter notebook作为演示的编辑器;Python中的数据框相关功能集成在数据分析相关包pandas中,下面对一些常用的关于数据框的知识进行说明: 1.数据框的创建 import pandas as pd from numpy import random a = [i for i i…