觉得有用的话,欢迎一起讨论相互学习~Follow Me 吴恩达采访Geoffrey Hinton NG:前几十年,你就已经发明了这么多神经网络和深度学习相关的概念,我其实很好奇,在这么多你发明的东西中,哪些你到现在为止依然保持有热情的. Hinton:我认为我觉得最具学术之美的是受限Boltzmann机器,我们认为他能用很简单很简单的算法去应用到密度很高的连接起来的网络. Hinton:我仍然认为无监督学习十分重要,当我们真正搞明白一些东西以后,结果会比现在好很多.不过目前并没有找到这种方法.…
觉得有用的话,欢迎一起讨论相互学习~Follow Me 2.11向量化 向量化是消除代码中显示for循环语句的艺术,在训练大数据集时,深度学习算法才变得高效,所以代码运行的非常快十分重要.所以在深度学习领域中将大数据集进行向量化操作变得十分重要. 对于非向量化数据的计算,我们会使用循环去遍历整个数据集计算对应项的乘积.例如我们要计算一个数据样本,其中w和b都是一个n维向量,计算式子:\(Z=W^{T}+b\)那么我们的式子会写为: z=0 for i in range(n-x) z+=w[i]*…
觉得有用的话,欢迎一起讨论相互学习~Follow Me 3.2 神经网络表示 对于一个由输入层,隐藏层,输出层三层所组成的神经网络来说,输入层,即输入数据被称为第0层,中间层被称为第1层,输出层被称为第2层.所以这个神经网络被称为两层神经网络,我们不把输入层当做一个标准的层. 3.3 计算神经网络的输出 对于输入层的输入,我们把输入看做是一个矩阵,对于第一层的第一个神经元结点,计算\(W^T*x+b\) 3.4 多个样本例子中的向量化 上一节讨论的是对于单个样本我们使用神经网络表示的方法,现在我…
觉得有用的话,欢迎一起讨论相互学习~Follow Me 4.2 深层神经网络中的前向传播 4.3 核对矩阵的维数 经验方法论 对于神经网络想增加得到没有bug的程序的概率的方法:需要仔细的思考矩阵的维数,Angrew自己在调试bug时自己会不断的看自己写的神经网络中矩阵的维度. 4.4 为什么使用深层表示 如果在建立一个人脸识别系统,那么你可以吧神经网络的第一层当成一个特征探测器或者边缘探测器,例如第一层神经元就会找特征图中相对应的边缘的方向,对于第二层隐藏层可以将被探测到的边缘组合成面部的不同…
觉得有用的话,欢迎一起讨论相互学习~Follow Me 2.1 二分分类 在二分分类问题中,目标是训练出一个分类器,它以图片的特征向量x作为输入,预测输出的结果标签y是1还是0.在图像识别猫图片的例子中也就是预测图片中是否有猫. 2.2 logistic回归 已知的输入的特征向量x,可能是一张图,你需要将其识别出这是不是一张猫图,你需要一个算法,给出一个预测值,这里我们将预测值表示为\(\hat{y}\).就是你对y的预测,正 式的说你希望y是一个预测的概率值.当输入特征x满足条件时,y就是1.…
神经网络和深度学习这一块内容与机器学习课程里Week4+5内容差不多. 这篇笔记记录了Week4+5中没有的内容. 参考笔记:深度学习笔记 神经网络和深度学习 结构化数据:如数据库里的数据 非结构化数据:hard to understand:如图像.文本 一. 深度学习的优势 算法.硬件计算能力的提高使神经网络运行速度变快 大数据(带labels的)使得神经网络精确度更高 在数据集不多的时候深度学习的优势并不是很明显,但是在大数据的情况下,辅助以好的算法和强计算能力,会使神经网络的运行速度和精确…
1. 本科的时候在多伦多大学上Geoffrey Hinton的课,在MNIST数字数据集上训练受限玻尔兹曼机,觉得很有趣.后来在UBC读硕士,上了另一门机器学习的课,那是他第一次深入了解神经网络的相关知识.他对人工智能很感兴趣,上了很多相关的课,但是对那些知识听不太懂,不是非常满意.他觉得神经网络才是AI,才是真正有趣的东西.于是他走上了这条路. 2. Karpathy认为神经网络是一种新的编程方式,我们定义好输入和输出,喂给程序很多例子,然后它会自动写程序. 3. NG觉得Karpathy对于…
1. 如何走上人工智能的研究的?Bengio说他小时候读了很多科幻小说,1985年(64年出生,21岁)研究生阶段开始阅读神经网络方面的论文,对这个领域产生了热情. 2. 如何看深度学习这些年的发展?Bengio说他们从实验.直觉入手,然后才提出理论,比如为什么反向传播有效,为什么深度这么重要.2000年开始研究深度神经网络的时候,他们只是很直觉的认为神经网络更深才会更强大,并不清楚怎么论证,最初的实验也没有成功. 3. 和30年前相比,有哪些东西是很重要的,它们后来被证明是以正确的,又有哪些最…
1. 怀揣着对大脑如何存储记忆的好奇,Hinton本科最开始学习生物学和物理学,然后放弃,转而学习哲学:然后觉得哲学也不靠谱,转而学习心理学:然后觉得心理学在解释大脑运作方面也不给力,转而做了一段时间木匠(木匠?!木匠是什么鬼...要不要这么洒脱!),然后决定去试一试人工智能,跑去爱丁堡和Longuet Higgins学人工智能. (感觉Hinton一直带着兴趣和使命感,这是最终目的,而具体学科都只是手段,这个不行就换下一个,市面上找不到就自己造一个.想到现实中很多人因为本科填报了一个专业,就把…
Ruslan Salakhutdinov一方面是苹果的研究主管,另一方面是CMU的教授. 1. Ruslan说自己进入深度学习完全是运气,他在多伦多大学读硕士,然后休学了一年,他在金融领域工作,那时候他不确定是否要去读个博士.有一天早晨,他在路上遇到了Geoffrey Hinton.Geoffrey Hinton跟他说他有个好点子,然后两个人一起散步讨论,Geoffrey介绍了玻尔兹曼机之类的东西,Ruslan说自己当时没听懂Geoffrey在说什么,但他听了觉得很激动...于是就跟着Geoff…