今天推导公式,发现居然有对矩阵的求导,狂汗--完全不会.不过还好网上有人总结了.吼吼,赶紧搬过来收藏备份. 基本公式:Y = A * X --> DY/DX = A'Y = X * A --> DY/DX = AY = A' * X * B --> DY/DX = A * B'Y = A' * X' * B --> DY/DX = B * A' 1. 矩阵Y对标量x求导: 相当于每个元素求导数后转置一下,注意M×N矩阵求导后变成N×M了 Y = [y(ij)] --> dY/…
矩阵求导 参考链接: https://en.wikipedia.org/wiki/Matrix_calculus#Scalar-by-vector_identities…
https://en.wikipedia.org/wiki/Matrix_calculus http://blog.sina.com.cn/s/blog_7959e7ed0100w2b3.html…
注: 文章中所有的图片均来自台湾大学林轩田<机器学习基石>课程. 笔记原作者:红色石头 微信公众号:AI有道 上节课,主要介绍了在有noise的情况下,VC Bound理论仍然是成立的.同时,介绍了不同的error measure方法.本节课介绍机器学习最常见的一种算法:Linear Regression. 一.线性回归问题 在之前的Linear Classification课程中,讲了信用卡发放的例子,利用机器学习来决定是否给用户发放信用卡.本节课仍然引入信用卡的例子,来解决给用户发放信用卡…
注: 文章中所有的图片均来自台湾大学林轩田<机器学习基石>课程. 笔记原作者:红色石头 微信公众号:AI有道 前几节课着重介绍了机器能够学习的条件并做了详细的推导和解释.机器能够学习必须满足两个条件: 当假设空间\(\mathcal{H}\)的Size M是有限的时候,则\(N\)足够大的时候,对于假设空间中任意一个假设\(g\),都有\(E_{out}\approx E_{in}\) . 利用算法A从假设空间\(\mathcal{H}\)中,挑选一个\(g\),使\(E_{in}(g)\ap…
注: 文章中所有的图片均来自台湾大学林轩田<机器学习基石>课程. 笔记原作者:红色石头 微信公众号:AI有道 上一节课,我们介绍了Logistic Regression问题,建立cross-entropy error,并提出使用梯度下降算法gradient descent来获得最好的logistic hypothesis.本节课继续介绍使用线性模型来解决分类问题. 一.Linear Models for Binary Classification 之前介绍的几种线性模型都有一个共同点,就是都有…
注: 文章中所有的图片均来自台湾大学林轩田<机器学习基石>课程. 笔记原作者:红色石头 微信公众号:AI有道 上一节课,我们主要介绍了VC Dimension的概念.如果Hypotheses set的VC Dimension是有限的,且有足够多的资料\(N\),同时能够找到一个hypothesis使它的\(E_{in}\approx 0\),那么就能说明机器学习是可行的.本节课主要讨论数据集有Noise的情况下,是否能够进行机器学习,并且介绍了假设空间H下演算法\(\mathcal{A}\)的…
机器学习基石 5 Training versus Testing Recap and Preview 回顾一下机器学习的流程图: 机器学习可以理解为寻找到 \(g\),使得 \(g \approx f\),也就是 \(E_{out}(g) \approx 0\) 的过程.为了完成这件事情,有两个关键的步骤,一个是保证 \(E_{out}(g) \approx E_{in}(g)\),另一个是保证 \(E_{in}(g) \approx 0\) (这两件事情通常由 "训练" 以及 &qu…
1  定义 机器学习 (Machine Learning):improving some performance measure with experience computed from data 2  应用举例 ML:an alternative route to build complicated systems 2.1  股票预测   2.2  图像识别 2.3  衣食住行    2.4  关键要素 在决定某些应用场景,是否适合使用机器学习时,常考虑以下三个要素: 1) exists s…