题目大意 有n个数字,选出一个子集,有q个询问,求子集和模m等于0的方案数%1000000009.(n <= 100000,m <= 100,q <= 30) 假设数据很小,我们完全可以做一个背包. 我们沿着背包的思路,看能不能给物品分一下类,由于m比较小,完全按N个数字模M后的值进行分类,这样就变成了一个多重背包的问题.(转移时要乘上一个组合数) 这时候的时间复杂度是n*m,还是不能过. 对于DP时所枚举到的模m后余数j,它所进行的状态转移是一定的,如果把这些转移先预处理出来,时间复杂…
[CC-ANUCBC]Cards, bags and coins 题目大意: 给你\(n(n\le10^5)\)个数,\(q(q\le30)\)次询问,问从中选取若干个数使得这些数之和为\(m(m\le100)\)的方案数. 思路: 不难想到一个比较暴力的动态规划,用\(f[i][j]\)表示用了前\(i\)个数,和为\(j\)的方案数.时间复杂度\(\mathcal O(nmq)\). 发现动态规划中我们只关心每个数在模\(m\)意义下的值,因此直接用\(n\)个数转移实在是太愚蠢了. 将这些…
题意保证了是一个置换群. 根据burnside引理, 答案为Σc(f) / (M+1). c(f)表示置换f的不动点数, 而题目限制了颜色的数量, 所以还得满足题目, 用背包dp来计算.dp(x,i,j,k) = dp(x,i-cntx,j,k)+dp(x,i,j-cntx,k)+dp(x,i,j,k-cntx)表示前x个置换红蓝绿个用了i,j,k次,cntx表示第x个置换的循环数. 然后最后乘(M+1)的乘法逆元就OK了. -----------------------------------…
https://www.codechef.com/problems/ANUCBC n个数字,选出其一个子集.求有多少子集满足其中数字之和是m的倍数.n $\le$ 100000,m $\le$ 100,最多90组数据 傻逼题模数取什么1e9+9毁我一节课该死煞笔提 [15:13:47]刚刚心塞了一会儿出去跑了几步好点了,然后发现好像是生物老师在艺术楼走廊上给人讲题(今天好像有学校给成绩好的单独上课之类的活动,好多同学都来了艺术楼的一个教室了和机房隔一个拐角........) #include <…
题意大概是:给出N个硬币, 面值为a_i, 问要凑成X元哪些硬币是不可或缺的.1 ≤ N ≤ 200, 1 ≤ x ≤ 10^4 直接枚举, 然后就是01背包了. 为了不让复杂度多乘个N, 我们就从左往右, 从右往左分别dp一次.这样判断一个硬币就是O(X).总时间复杂度O(NX) ----------------------------------------------------------------------------- #include<bits/stdc++.h>   usi…
题意:一个强盗要抢劫银行又不想被抓到,所以要进行概率分析求他在不被抓的情况下能抢最多的钱.他给定T(样例个数),N(要抢的银行的个数),P(被抓的概率要小于P)Mj(强盗能抢第j个银行Mj元钱),Pj(强盗抢第j个银行被抓的概率为Pj). 思路:被抓的概率不好直接求出来,但可以直接求出不被抓的概率,则有状态转移方程dp[j] = max(dp[j], dp[j-b[i].money]*b[i].p)表示抢到j元钱被抓的最大的概率是多少.然后逆序遍历第一个小于P的dp的下标就是答案. PS:数组的…
一开始没多想,虽然注意到数据N<=10^4的范围,想PAT的应该不会超时吧,就理所当然地用dfs做了,结果最后一组真的超时了.剪枝啥的还是过不了,就意识到肯定不是用dfs做了.直到看到别人说用01背包的思路,果真好久没做题了智力水平下降,且原本dp就是我的弱项,压根就没把这题往dp上去想额... (http://www.liuchuo.net/archives/2323) 题意:从n个硬皮中选取方案,使得总和价值正好为m,如果有多种,方案为排列最小的那个. 可以把硬币看成w=v(即容量=价值)的…
D - Bags and Coins 思路:我们可以这样构造,最大的那个肯定是作为以一个树根,所以我们只要找到一个序列a1 + a2 + a3 .... + ak 并且ak为 所有点中最大的那个,那么我们a1, a2, a3..., ak-1 作为单独的点,其他没有涉及到的点套在ak的里面. 现在问题变成了找出a1, a2, a3, a4, ... , ak. 可以用bitset优化普通dp,因为要找路径,空间开不下,所以需要分段. #include<bits/stdc++.h> #defin…
01背包的变形. 先算出硬币面值的总和,然后此题变成求背包容量为V=sum/2时,能装的最多的硬币,然后将剩余的面值和它相减取一个绝对值就是最小的差值. 代码: #include <iostream> #include <cstdio> #include <cstring> #include <cmath> #include <algorithm> using namespace std; #define N 50007 ],dp[N]; int…
题目描述 有\(n\)张卡牌,要求你给这些卡牌染上RGB三种颜色,\(r\)张红色,\(g\)张绿色,\(b\)张蓝色. 还有\(m\)种洗牌方法,每种洗牌方法是一种置换.保证任意多次洗牌都可用这\(m\)种洗牌法中的一种代 替,且对每种洗牌法,都存在一种洗牌法使得能回到原状态. 问你本质不同的染色方法有多少种. \(r,g,b\leq 20,m\leq 60\) 题解 对照置换群的定义,可以发现这\(m\)种置换加上恒等置换一共\(m+1\)中置换构成了一个置换群. 由burnside引理得到…