首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
【
Spark性能调优-高级篇
】的更多相关文章
Spark性能调优-高级篇
前言 继基础篇讲解了每个Spark开发人员都必须熟知的开发调优与资源调优之后,本文作为<Spark性能优化指南>的高级篇,将深入分析数据倾斜调优与shuffle调优,以解决更加棘手的性能问题. 数据倾斜调优 调优概述 有的时候,我们可能会遇到大数据计算中一个最棘手的问题——数据倾斜,此时Spark作业的性能会比期望差很多.数据倾斜调优,就是使用各种技术方案解决不同类型的数据倾斜问题,以保证Spark作业的性能. 数据倾斜发生时的现象 绝大多数task执行得都非常快,但个别task执行极慢.比如…
Spark性能调优-基础篇
前言 在大数据计算领域,Spark已经成为了越来越流行.越来越受欢迎的计算平台之一.Spark的功能涵盖了大数据领域的离线批处理.SQL类处理.流式/实时计算.机器学习.图计算等各种不同类型的计算操作,应用范围与前景非常广泛. 然而,通过Spark开发出高性能的大数据计算作业,并不是那么简单的.如果没有对Spark作业进行合理的调优,Spark作业的执行速度可能会很慢,这样就完全体现不出Spark作为一种快速大数据计算引擎的优势来.因此,想要用好Spark,就必须对其进行合理的性能优化. Spa…
spark性能调优 数据倾斜 内存不足 oom解决办法
[重要] Spark性能调优——扩展篇 : http://blog.csdn.net/zdy0_2004/article/details/51705043…
【转】【技术博客】Spark性能优化指南——高级篇
http://mp.weixin.qq.com/s?__biz=MjM5NjQ5MTI5OA==&mid=2651745207&idx=1&sn=3d70d59cede236eb1cb4f7374387a235&scene=0#rd [技术博客]Spark性能优化指南——高级篇 2016-05-13 李雪蕤 美团技术团队 前言 继基础篇讲解了每个Spark开发人员都必须熟知的开发调优与资源调优之后,本文作为<Spark性能优化指南>的高级篇,将深入分析数据倾斜调…
[Spark性能调优] 第二章:彻底解密Spark的HashShuffle
本課主題 Shuffle 是分布式系统的天敌 Spark HashShuffle介绍 Spark Consolidated HashShuffle介绍 Shuffle 是如何成为 Spark 性能杀手 Shuffle 性能调优思考 Spark HashShuffle 源码鉴赏 引言 Spark HashShuffle 是它以前的版本,现在1.6x 版本默应是 Sort-Based Shuffle,那为什么要讲 HashShuffle 呢,因为有分布式就一定会有 Shuffle,而且 HashSh…
Spark性能调优
Spark性能优化指南——基础篇 https://tech.meituan.com/spark-tuning-basic.html Spark性能优化指南——高级篇 https://tech.meituan.com/spark-tuning-pro.html [Spark性能调优] 第二章:彻底解密Spark的HashShuffle http://www.cnblogs.com/jcchoiling/p/6431969.html [Spark性能调优] 第三章 : Spark 2.1.0 中 S…
Spark性能优化指南——高级篇
本文转载自:https://tech.meituan.com/spark-tuning-pro.html 美团技术点评团队) Spark性能优化指南——高级篇 李雪蕤 ·2016-05-12 14:47 前言 继基础篇讲解了每个Spark开发人员都必须熟知的开发调优与资源调优之后,本文作为<Spark性能优化指南>的高级篇,将深入分析数据倾斜调优与shuffle调优,以解决更加棘手的性能问题. 数据倾斜调优 调优概述 有的时候,我们可能会遇到大数据计算中一个最棘手的问题——数据倾斜,此时Spa…
[Spark性能调优] 第一章:性能调优的本质、Spark资源使用原理和调优要点分析
本課主題 大数据性能调优的本质 Spark 性能调优要点分析 Spark 资源使用原理流程 Spark 资源调优最佳实战 Spark 更高性能的算子 引言 我们谈大数据性能调优,到底在谈什么,它的本质是什么,以及 Spark 在性能调优部份的要点,这两点让在进入性能调优之前都是一个至关重要的问题,它的本质限制了我们调优到底要达到一个什么样的目标或者说我们是从什么本源上进行调优.希望这篇文章能为读者带出以下的启发: 了解大数据性能调优的本质 了解 Spark 性能调优要点分析 了解 Spark 在…
Spark性能调优之代码方面的优化
Spark性能调优之代码方面的优化 1.避免创建重复的RDD 对性能没有问题,但会造成代码混乱 2.尽可能复用同一个RDD,减少产生RDD的个数 3.对多次使用的RDD进行持久化(cache,persist,checkpoint) 如何选择一种最合适的持久化策略? 默认MEMORY_ONLY, 性能很高, 而且不需要复制一份数据的副本,远程传送到其他节点上(BlockManager中的BlockTransferService),但是这里必须要注意的是,在实际的生产环境中,…
Spark性能调优之合理设置并行度
Spark性能调优之合理设置并行度 1.Spark的并行度指的是什么? spark作业中,各个stage的task的数量,也就代表了spark作业在各个阶段stage的并行度! 当分配完所能分配的最大资源了,然后对应资源去调节程序的并行度,如果并行度没有与资源相匹配,那么导致你分配下去的资源都浪费掉了.同时并行运行,还可以让每个task要处理的数量变少(很简单的原理.合理设置并行度,可以充分利用集群资源,减少每个task处理数据量,而增加性能加快运行速度.) 举例:…