uva 1434 - YAPTCHA(数论)】的更多相关文章

题目链接:uva 1434 - YAPTCHA 题目大意:给定n和k,求题目中给定的式子S(n). 解题思路:威尔逊定理,x为素数时有,((x−1)!+1)%x==0,所以对于本题.假设3*k+7为素数的话,[(3k+6)!+1(3k+7−[(3k+6)!3k+7]]=1 #include <cstdio> #include <cstring> #include <cmath> #include <algorithm> using namespace std…
题目链接:uva 10127 - Ones 题目大意:给出n,问说者少要多少为1才干够整除n. 解题思路:等于是高精度取模,直到余数为0为止. #include <cstdio> #include <cstring> int main () { int n; while (scanf("%d", &n) == 1) { int ans = 1, c = 1; while (c) { c = (c * 10 + 1) % n; ans++; } print…
题目链接:11645 - Bits 题意:给定一个数字n.要求0-n的二进制形式下,连续11的个数. 思路:和 UVA 11038 这题相似,枚举中间,然后处理两边的情况. 只是本题最大的答案会超过longlong,要用高精度,只是借鉴http://www.cnblogs.com/TO-Asia/p/3214706.html这个人的方法,直接用两个数字来保存一个数字.这样能保存到2个longlong的长度,就足够存放这题的答案了. 代码: #include <stdio.h> #include…
题意:给定一个n*m的棋盘,要放k个石子,要求第一行,最后一行,第一列,最后一列都有石子,问有多少种放法. 析:容斥原理,集合A是第一行没有石子,集合B是最后一行没有石子,集合C是第一列没有石子,集合D是最后一列没有石子,如果某一行或某一列, 没有,那么就相当于减少一行或者一列. 代码如下: #pragma comment(linker, "/STACK:1024000000,1024000000") #include <cstdio> #include <strin…
原来做过的题再看还是没想出来,看来当时必然没有真正理解.这次回顾感觉理解更透彻了. 网上的题解差不多都是一个版本,而且感觉有点扯.根据n=20猜出来的? 好吧哪能根据一个就猜到那么变态的公式.其实这题稍微找下规律就好.当然可能没有公式法效率高,但理解起来更容易吧. 你用n=20的例子,那么我也用.但我的想法是这样的. sum = 0; 我们考虑 i 是多少时 n/i = 1: 20/1 = 20, 故i <= 20, 又20/2 = 10,  故i > 10, 即 10 < i <…
UVA.12716 GCD XOR (暴力枚举 数论GCD) 题意分析 题意比较简单,求[1,n]范围内的整数队a,b(a<=b)的个数,使得 gcd(a,b) = a XOR b. 前置技能 XOR的性质 GCD 由于题目只给出一个n,我们要求对数,能做的也始终暴力枚举a,b,这样就有n^2的复杂度,由于n很大,根本过不了. 于是我们就想用到其中一些性质,如XOR 与GCD,不妨假设 a xor b = c,并且根据题意还知道, gcd(a,b) = c,也就说明c一定是a的因子,所以在枚举的…
数论题目.有关内容:整数质因数分解,N的阶乘质因数分解,整除的判断. 这道题的题意是给你两个数n.m,要求你求出n!所能整除的m^k的最大值的k是多少. 由于数据范围:1<m<5000,1<n<10000.通过分析我们可知,当n在100 以上后n!早已超出了int甚至__int64的范围了.即使在int范围内,要算出n!和m^k然后依次遍历,这样会超时. 所以我们可以考虑将如果m能整除n!,那么m^k才会有可能整除n!.如果n!可以整除m,那么将m进行质因数分解后,所得的所有质因子…
这是一道关于组合数和隔板法的数论题目.题目说的是选出k个不同且不大于N的数字进行相加,要求这些数字之和等于N,结果要求输出这样的数有多少组.这里可以将问题利用隔板法来转换,那么题目的叙述可以转换成:这里有N个相同的小球,要求放到k个相同的盒子中,盒子可以为空,但一定要把所有球都放进盒子中,问共有多少种放法.经过题目描述的转换,这道题目就可以运用隔板法的公式:所有符合条件的情况的种数为c[N+k-1][k-1]. 由组合数的公式可得c[m][n]=c[m-1][n-1]+c[m-1][n].由于这…
有关数论的题目,题目大意是给你两个数a和c,c为a和另一个数b的最小公倍数,要求你求出b的最小值.由最大公约数gcd(a,b)和最小公倍数lcm(a,b)之间的关系可知,lcm(a,b)*gcd(a,b)=a*b; 则b=lcm(a,b)*gcd(a,b)/a,b=c*gcd(a,b)/a,b/gcd(a,b)=c/a.因为c/a是b除去gcd(a,b)后的部分.若gcd(a,c/a)=1,就表明c/a就是我们要求的答案:否则,就说明c/a小于b,需要还原.还原 的过程中,首先求出gcd(a,c…
题目来源:https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&category=3&page=show_problem&problem=42  Fermat vs. Pythagoras  Background Computer generated and assisted proofs and verification occupy a small niche in the realm…