[NLP]LSTM理解】的更多相关文章

简介 LSTM(Long short-term memory,长短期记忆)是一种特殊的RNN,主要是为了解决长序列训练过程中的梯度消失问题.以下先从RNN介绍. 简说RNN RNN(Recurrent Neural Network,循环神经网络)是一种处理序列数据的神经网络.下图是它的结构: 从上图可以看出,RNN循环获取输入序列,并保存上一次输入的计算结果,与当前输入进行计算后,将计算结果输出并保存当前的计算结果,这样不断循环输入并计算,即可获取上文信息. RNN内部网络如下图所示,从图中可以…
nlp领域里,语义理解仍然是难题! 给你一篇文章或者一个句子,人们在理解这些句子时,头脑中会进行上下文的搜索和知识联想.通常情况下,人在理解语义时头脑中会搜寻与之相关的知识.知识图谱的创始人人为,构成这个世界的是实体,而不是字符串,这从根本上改变了过去搜索的体系.语义理解其实是基于知识,概念和这些概念间的关系.人们在解答问题时,往往会讲述与这个问题相关的知识,这是语义理解的过程.这种机制完全不同于人对图像或者语音的认识.CNN在图像或者语音领域取得成果是不足为奇的,因为生物学家已经对人脑神经元在…
简介 LSTM(Long short-term memory,长短期记忆)是一种特殊的RNN,主要是为了解决长序列训练过程中的梯度消失问题.以下先从RNN介绍. 简说RNN RNN(Recurrent Neural Network,循环神经网络)是一种处理序列数据的神经网络.下图是它的结构: RNN优点:它能处理序列数据,并且有记忆能力,能够利用上文信息. RNN缺点: 梯度消失:对于获取长距离依赖的效果不是很好(即如果上文信息离当前输入距离太远的话,理论上它是能够记得上文信息,但是事实上并不是…
(Demo) 这是最近两个月来的一个小总结,实现的demo已经上传github,里面包含了CNN.LSTM.BiLSTM.GRU以及CNN与LSTM.BiLSTM的结合还有多层多通道CNN.LSTM.BiLSTM等多个神经网络模型的的实现.这篇文章总结一下最近一段时间遇到的问题.处理方法和相关策略,以及经验(其实并没有什么经验)等,白菜一枚. Demo Site:  https://github.com/bamtercelboo/cnn-lstm-bilstm-deepcnn-clstm-in-…
一.学习NLP背景介绍:      从2019年4月份开始跟着华为云ModelArts实战营同学们一起进行了6期关于图像深度学习的学习,初步了解了关于图像标注.图像分类.物体检测,图像都目标物体检测等,基本了解了卷积神经网络(CNN)原理及相关常用模型,如:VGG16.MaxNet等.之后从9月份开始在华为云AI专家的带领指引下,对AI深度学习的另外一个重要领域:自然语言处理(NLP)的学习,到目前为止学习了:命名实体识别.文本分类.文本相似度分析.问答系统.人脸检测.在这一个多月对NLP的处理…
前言 先来看一些demo,来一些直观的了解. 自然语言处理: 可以做中文分词,词性分析,文本摘要等,为后面的知识图谱做准备. http://xiaosi.trs.cn/demo/rs/demo 知识图谱: https://www.sogou.com/tupu/person.html?q=刘德华 还有2个实际应用的例子,加深对NLP的理解 九歌机器人: https://jiuge.thunlp.cn/ 微软对联机器人: http://duilian.msra.cn/ NLP概述: 自然语言处理,是…
小样本利器2.文本对抗+半监督 FGSM & VAT & FGM代码实现 上一章我们聊了聊通过一致性正则的半监督方案,使用大量的未标注样本来提升小样本模型的泛化能力.这一章我们结合FGSM,FGM,VAT看下如何使用对抗训练,以及对抗训练结合半监督来提升模型的鲁棒性.本章我们会混着CV和NLP一起来说,VAT的两篇是CV领域的论文,而FGM是CV迁移到NLP的实现方案,一作都是同一位作者大大.FGM的tensorflow实现详见Github-SimpleClassification 我们会…
Source Kelly J., Primer on Cognitive Computing 20150216. 侵删,联系方式:zhoujiagen\@gmail.com. 按A candidate solution for Java Web Application - current session中涉及内容,拼图还缺推荐和认知步骤. 这篇文章就Cognitive Computing的讨论偏向于商业的决策支持,与原计划中领域知识认知步骤(模型)中认知存在一定的区别,虽然没有进展,但有效的排除…
选自 Github 机器之心编译 参与:吴攀.李亚洲 这是使用 TensorFlow 实现流行的机器学习算法的教程汇集.本汇集的目标是让读者可以轻松通过案例深入 TensorFlow. 这些案例适合那些想要清晰简明的 TensorFlow 实现案例的初学者.本教程还包含了笔记和带有注解的代码. 项目地址:https://github.com/aymericdamien/TensorFlow-Examples 教程索引 0 - 先决条件 机器学习入门: 笔记:https://github.com/…
转:https://www.jiqizhixin.com/articles/30dc6dd9-39cd-406b-9f9e-041f5cbf1d14 这是使用 TensorFlow 实现流行的机器学习算法的教程汇集.本汇集的目标是让读者可以轻松通过案例深入 TensorFlow. 这些案例适合那些想要清晰简明的 TensorFlow 实现案例的初学者.本教程还包含了笔记和带有注解的代码. 项目地址:https://github.com/aymericdamien/TensorFlow-Examp…