论文地址:ICASSP 2021声学回声消除挑战:数据集和测试框架 代码地址:https://github.com/microsoft/DNS-Challenge 主页:https://aec-challenge.azurewebsites.net/ 摘要 ICASSP 2021年声学回声消除挑战赛旨在促进声学回声消除(AEC)领域的研究,该领域是语音增强的重要组成部分,也是音频通信和会议系统中的首要问题.许多最近的AEC研究报告了在训练和测试样本(来自相同基础分布的合成数据集)上的良好性能.然…
论文地址:https://ieeexplore.ieee.org/abstract/document/9413510 基于双信号变换LSTM网络的回声消除 摘要 本文将双信号变换LSTM网络(DTLN)应用于实时声学回声消除(AEC)任务中.DTLN结合了短时傅里叶变换和堆叠网络方法中的学习特征表示,这使得在时频和时域(也包括相位信息)中能够进行鲁棒的信息处理.该模型仅在真实和合成回声场景下训练60小时.训练设置包括多语言语音.数据增强.附加噪音和混响,以创建一个可以很好地适用于各种现实环境的模…
论文地址:https://ieeexplore.ieee.org/abstract/document/9414462 ICASSP 2021声学回声消除挑战:结合时间对准的自适应回声消除和基于深度学习的残余回声加噪声抑制 摘要: 本文描述了一种用于ICASSP 2021年声学回声消除挑战赛的三级声学回声消除和抑制框架.第一阶段采用分块频域自适应滤波,在不引入近端语音失真的情况下消除线性回声分量,并预先补偿远端参考信号与麦克风信号之间的时延.在第二阶段,提出了一种结合门控循环单元的深复杂U-Net…
论文地址:https://arxiv.53yu.com/abs/2005.09237 自适应数字滤波与循环神经网络相结合的回声消除技术 摘要 回声消除(AEC)在语音交互中起关键作用.由于明确的数学原理和适应条件的智能特性,具有不同实现类型的自适应滤波器始终用于AEC,从而提供了可观的性能.但是,结果中会存在某种残留回波,包括估计和实际之间不匹配引起的线性残留以及主要由音频设备上的非线性分量引起的非线性残留.可以通过精细的结构和方法减少线性残留,但非线性残留难以抑制.尽管已经提出了一些非线性处理…
论文地址:https://ieeexplore.ieee.org/abstract/document/9306224 基于RNN的回声消除 摘要 本文提出了一种基于深度学习的语音分离技术的回声消除方法.传统上,AEC使用线性自适应滤波器来识别麦克风和扬声器之间的声脉冲响应.然而,当传统方法遇到非线性条件时,处理的结果并不理想.我们的实践利用了深度学习技术的优势,这有利于非线性处理.在所采用的RNN系统中,与传统的语音分离方法不同,我们增加了单讲特征,并为每个元素分配特定的权重.实验结果表明,该方…
论文地址:https://arxiv.53yu.com/abs/2106.07577 基于 F-T-LSTM 复杂网络的联合声学回声消除和语音增强 摘要 随着对音频通信和在线会议的需求日益增加,在包括噪声.混响和非线性失真在内的复杂声学场景下,确保声学回声消除(AEC)的鲁棒性已成为首要问题.尽管已经有一些传统的方法考虑了非线性失真,但它们对于回声抑制仍然效率低下,并且在存在噪声时性能会有所衰减.在本文中,我们提出了一种使用复杂神经网络的实时 AEC 方法,以更好地建模重要的相位信息和频率时间…
论文地址:https://graz.pure.elsevier.com/en/publications/acoustic-echo-cancellation-with-cross-domain-learning 具有跨域学习的声学回声消除 摘要: 本文提出了跨域回声控制器(CDEC),提交给 Interspeech 2021 AEC-Challenge.该算法由三个构建块组成:(i) 时延补偿 (TDC) 模块,(ii) 基于频域块的声学回声消除器 (AEC),以及 (iii) 时域神经网络 (…
论文地址:深度噪声抑制模型的性能优化 引用格式:Chee J, Braun S, Gopal V, et al. Performance optimizations on deep noise suppression models[J]. arXiv preprint arXiv:2110.0437…
论文地址:深度学习用于噪音和双语场景下的回声消除 博客地址:https://www.cnblogs.com/LXP-Never/p/14210359.html 摘要 传统的声学回声消除(AEC)通过使用自适应算法识别声学脉冲响应来工作. 我们将AEC公式化为有监督的语音分离问题,该问题将说话人信号和近端信号分开,以便仅将后者传输到远端. 训练双向长短时记忆的递归神经网络(BLSTM)对从近端和远端混合信号中提取的特征进行估计.然后应用BLSTM估计的理想比率掩模来分离和抑制远端信号,从而去除回波…
论文地址:https://dl.acm.org/doi/abs/10.1145/3330393.3330399 基于深度神经网络的回声消除回归方法 摘要 声学回声消除器(AEC)的目的是消除近端传声器接收到的混合信号中的声学回声.传统的方法是使用自适应有限脉冲响应(FIR)滤波器来识别房间脉冲响应(RIR),因为房间脉冲响应对各种野外场景都不具有鲁棒性.在本文中,我们提出了一种基于深度神经网络的回归方法,从近端和远端混合信号中提取的特征直接估计近端目标信号的幅值谱.利用深度学习强大的建模和泛化能…