R语言-散点图进阶】的更多相关文章

1.分组散点图 ①xyplot()函数 > library(lattice) > xyplot(mpg~disp, #定义Y~X轴 + data=mtcars, + groups=cyl, #定义分组 + auto.key=list(corner=c(1,1))) #设置图例 ②qplot()函数 > library(ggplot2) #加载包 > qplot(disp,mpg,data=mtcars, + col= as.factor(cyl)) #用颜色分组 > qplo…
本文对应<R语言编程艺术> 第14章:性能提升:速度和内存: 第15章:R与其他语言的接口: 第16章:R语言并行计算 ========================================================================= 性能提升:速度和内存 要使R代码运行速度更快,有以下建议: 通过向量化的方式优化.使用字节码编译等: 将代码中最消耗CPU的核心部分用编译型语言编写,如C或C++: 将代码用某种并行的方式编写. 消除显示循环: 采用向量化提升速度…
本文对应<R语言实战>第11章:中级绘图:第16章:高级图形进阶 基础图形一章,侧重展示单类别型或连续型变量的分布情况:中级绘图一章,侧重展示双变量间关系(二元关系)和多变量间关系(多元关系)的绘图:高级绘图进阶一章介绍四种图形系统,主要介绍lattice和ggplot2包. ========================================================================= 散点图: 主要内容:把多个散点图组合起来形成一个散点图矩阵,以便可以同时…
散点图简介 散点图通常是用来表述两个连续变量之间的关系,图中的每个点表示目标数据集中的每个样本. 同时散点图中常常还会拟合一些直线,以用来表示某些模型. 绘制基本散点图 本例选用如下测试数据集: 绘制方法是首先调用ggplot函数选定数据集,并在aes参数中指明横轴纵轴.然后调用散点图函数geom_point()便可绘制出基本散点图.R语言示例代码如下: # 基函数 ggplot(ah, aes(x = ageYear, y = heightIn)) + # 散点图函数 geom_point()…
R语言进阶之4:数据整形(reshape) 2013-05-31 10:15 xxx 网易博客 字号:T | T 从不同途径得到的数据的组织方式是多种多样的,很多数据都要经过整理才能进行有效的分析,数据整形不仅仅是为了改善数据的外观,也是进行一些统计分析和作图前必要的步骤.数据整形和数据凝练/汇总往往密不可分,这是门学问,是R语言数据处理的内容之一. AD:51CTO技术沙龙 | 赋予APP不同凡响的交互和体验>> 来源: http://developer.51cto.com/art/2013…
R语言基础绘图系统 基础图形--散点图.盒形图 plot是一个泛型函数(generic method),对于不同的数据绘制不同的图形. par函数的大部分参数在plot中通用. 1.散点图 plot绘制散点图类型,type有6种,即p, b, l, s, o, n. type=c('p','b','l','s','o','n') par(mfrow=c(2,3)) for(i in 1:6){ plot(1:10,type = type[i], main = paste('type is: ',…
一个简单的例子: > plot(cars$dist~cars$speed,+ main="车位移与速度的关系",+ xlab="速度",+ ylab="位移",+ xlim=c(0,25),+ ylim=c(0,100), + cex=1, + col="red",+ pch=19) 运行结果如图: 参数如下,具体使用方法见上面示例 main:图形标题 sub:子标题 xlab:x轴标题 ylab:y轴标题 xlim:x…
一.通过重新构建数据进行整形 数据整形最直接的思路就把数据全部向量化,然后按要求用向量构建其他类型的数据.这样是不是会产生大量的中间变量.占用大量内存?没错.R语言的任何函数(包括赋值)操作都会有同样的问题,因为R函数的参数传递方式是传值不传址,变量不可能原地址修改后再放回原地址. 矩阵和多维数组的向量化有直接的类型转换函数: as.vector,向量化后的结果顺序是先列后行再其他: > (x <- matrix(1:4, ncol=2))  #为节省空间,下面的结果省略了一些空行 [,1] …
R语言  ggplot2包的学习   分析数据要做的第一件事情,就是观察它.对于每个变量,哪些值是最常见的?值域是大是小?是否有异常观测? ggplot2图形之基本语法: ggplot2的核心理念是将绘图与数据分离,数据相关的绘图与数据无关的绘图分离ggplot2是按图层作图ggplot2保有命令式作图的调整函数,使其更具灵活性ggplot2将常见的统计变换融入到了绘图中.ggplot的绘图有以下几个特点:第一,有明确的起始(以ggplot函数开始)与终止(一句语句一幅图):其二,图层之间的叠加…
R语言特征 对大小写敏感 通常,数字,字母,. 和 _都是允许的(在一些国家还包括重音字母).不过,一个命名必须以 . 或者字母开头,并且如果以 . 开头,第二个字符不允许是数字. 基本命令要么是表达式(expressions)要么就是 赋值(assignments). 命令可以被 (;)隔开,或者另起一行. 基本命令可以通过大括弧({和}) 放在一起构成一个复合表达式(compound expression). 一行中,从井号(#)开始到句子收尾之间的语句就是是注释. R是动态类型.强类型的语…
R语言与数据挖掘:公式:数据:方法 R语言特征 对大小写敏感 通常,数字,字母,. 和 _都是允许的(在一些国家还包括重音字母).不过,一个命名必须以 . 或者字母开头,并且如果以 . 开头,第二个字符不允许是数字. 基本命令要么是表达式(expressions)要么就是 赋值(assignments). 命令可以被 (;)隔开,或者另起一行. 基本命令可以通过大括弧({和}) 放在一起构成一个复合表达式(compound expression). 一行中,从井号(#)开始到句子收尾之间的语句就…
[R笔记]R语言函数总结   R语言与数据挖掘:公式:数据:方法 R语言特征 对大小写敏感 通常,数字,字母,. 和 _都是允许的(在一些国家还包括重音字母).不过,一个命名必须以 . 或者字母开头,并且如果以 . 开头,第二个字符不允许是数字. 基本命令要么是表达式(expressions)要么就是 赋值(assignments). 命令可以被 (;)隔开,或者另起一行. 基本命令可以通过大括弧({和}) 放在一起构成一个复合表达式(compound expression). 一行中,从井号(…
R语言基础画图/绘图/作图 R语言基础画图 R语言免费且开源,其强大和自由的画图功能,深受广大学生和可视化工作人员喜爱,这篇文章对如何使用R语言作基本的图形,如直方图,点图,饼状图以及箱线图进行简单介绍. 0 结构 每种图形构成一个section,每个部分大致三部分构成,分别是R语言标准画图代码,R语言画图实例,和画图结果. R语言标准画图代码帮助你可以直接使用:help(funciton)查找,实例数据基本都来自内置包的数据,好了,直接切入主图,从最简单的点图开始吧. 1 点图 点图,简单的讲…
原博: R语言与数据挖掘:公式:数据:方法 R语言特征 对大小写敏感 通常,数字,字母,. 和 _都是允许的(在一些国家还包括重音字母).不过,一个命名必须以 . 或者字母开头,并且如果以 . 开头,第二个字符不允许是数字. 基本命令要么是表达式(expressions)要么就是 赋值(assignments). 命令可以被 (;)隔开,或者另起一行. 基本命令可以通过大括弧({和}) 放在一起构成一个复合表达式(compound expression). 一行中,从井号(#)开始到句子收尾之间…
转载自:http://blog.fens.me/r-linear-regression/ 前言 在我们的日常生活中,存在大量的具有相关性的事件,比如大气压和海拔高度,海拔越高大气压强越小:人的身高和体重,普遍来看越高的人体重也越重.还有一些可能存在相关性的事件,比如知识水平越高的人,收入水平越高:市场化的国家经济越好,则货币越强势,反而全球经济危机,黄金等避险资产越走强. 如果我们要研究这些事件,找到不同变量之间的关系,我们就会用到回归分析.一元线性回归分析是处理两个变量之间关系的最简单模型,是…
本文对应<R语言实战>前3章,因为里面大部分内容已经比较熟悉,所以在这里只是起一个索引的作用. 第1章       R语言介绍 获取帮助函数 help(), ? 查看函数帮助 example() 使用函数示例 vignette() 列出vignette文档 vignette("svmdoc") 打开对应文档 管理工作空间 getwd() 显示当前工作目录 setwd("mydirectory") 修改当前工作目录为mydirectory rm(objec…
最近遇到一些程序员同学向我了解R语言,有些更是想转行做数据分析,故开始学习R或者Python之类的语言.在有其他编程语言的背景下,学习R的语法的确是一件十分简单的事.霸特,如果以为仅仅是这样的话那就图样图森破. 首先,数据分析是一个非常庞杂的职能,也许岗位抬头均为数据分析师的两人,做的事情却大不相同——比如使用hadoop做日志统计和使用Excel处理报表,这简直是两个领域,相互之间的职能了解,可能仅为对方工作的冰山一角. 其次,无论任何行业的数据分析,其日常工作主要为以下几块: 数据获取——数…
Rmarkdown用法与R语言动态报告数据分析用R语言非常便捷,因为R语言的社区强大,并且在不断更新和完善,提供了各种分析利器.Knitr和Rmarkdown包则是数据分析中的动态报告利器. 下面是一份输出HTML文档的Rmd文件.备忘--- # 一级标题(#+空格+文字) ## 二级标题(##+空格+文字) ....... ....... ##### 五级标题 ### 无序列表 运动: - 篮球 - 足球 ### 有序列表排名: 1. 第一名 2. 第二名 3. 第三名 ## 嵌入代码 把r换…
买了三本R语言的书,同时使用来学习R语言,粗略翻下来感觉第一本最好: <R语言编程艺术>The Art of R Programming <R语言初学者使用>A Beginner’s Guide to R <R语言实战>R in Action 一句话简介R语言:R是一种用于数据处理和统计分析的脚本语言,它受到由AT&T实验室开发的统计语言S(Statistics)的启发,且基本上兼容于S语言. 下载并安装R 从google中搜索R,第一个搜索结果就是R语言的网站…
现在对R感兴趣的人越来越多,很多人都想快速的掌握R语言,然而,由于目前大部分高校都没有开设R语言课程,这就导致很多人不知道如何着手学习R语言. 对于初学R语言的人,最常见的方式是:遇到不会的地方,就跑到论坛上吼一嗓子,然后欣然or悲伤的离去,一直到遇到下一个问题再回来.当然,这不是最好的学习方式,最好的方式是——看书.目前,市面上介绍R语言的书籍很多,中文英文都有.那么,众多书籍中,一个生手应该从哪一本着手呢?入门之后如何才能把自己练就成某个方面的高手呢?相信这是很多人心中的疑问.有这种疑问的人…
此书网上有英文电子版:Machine Learning with R - Second Edition [eBook].pdf(附带源码) 评价本书:入门级的好书,介绍了多种机器学习方法,全部用R相关的包实现,案例十分详实,理论与实例结合. 目录 第一章 机器学习简介 第二章 数据的管理和理解 第三章 懒惰学习--使用近邻分类 第四章 概率学习--朴素贝叶斯分类 第五章 分而治之--应用决策树和规则进行分类 第六章 预测数值型数据--回归方法 第七章 黑箱方法--神经网络和支持向量机 第八章 探…
教材目录 第一部分 入门 第一章 R语言介绍 第二章 创建数据集 第三章 图形初阶 第四章 基本数据管理 第五章 高级数据管理 第二部分 基本方法 第六章 基本图形 第七章 基本统计方法 第三部分 中级方法 第八章 回归 第九章 方差分析 第十章 功效分析 第十一章 中级绘图 第十二章 重抽样与自助法 第四部分 高级方法 第十三章 广义线性模型 第十四章 主成分和因子分析 第十五章 处理缺失数据的高级方法 第十六章 高级图形进阶 第一章 R语言介绍   第二章 创建数据集   第三章 图形初阶…
1.关键点 #典型相关分析##典型相关分析是用于分析两组随机变量之间的相关程度的一种统计方法,它能够有效地揭示两组随机变量之间的相互(线性依赖)关系#例如 研究生入学考试成绩与本科阶段一些主要课程成绩的相关性#将研究两组变量的相关性问题转化为研究两个变量的相关性问题 此类相关为典型相关##总体典型相关#样本典型相关#典型相关计算 cancor(x,y,xcenter=TRUE,ycenter=TRUE)#x,y是相应的数据矩阵 xcenter,ycenter是逻辑变量 TRUE是将数据中心化 F…
数据分布图简介 中医上讲看病四诊法为:望闻问切.而数据分析师分析数据的过程也有点相似,我们需要望:看看数据长什么样:闻:仔细分析数据是否合理:问:针对前两步工作搜集到的问题与业务方交流:切:结合业务方反馈的结果和项目需求进行数据分析. "望"的方法可以认为就是制作数据可视化图表的过程,而数据分布图无疑是非常能反映数据特征(用户症状)的.R语言提供了多种图表对数据分布进行描述,本文接下来将逐一讲解. 绘制基本直方图 本例选用如下测试集: 直方图的横轴为绑定变量区间分隔的取值范围,纵轴则表…
折线图简介 折线图通常用来对两个连续变量的依存关系进行可视化,其中横轴很多时候是时间轴. 但横轴也不一定是连续型变量,可以是有序的离散型变量. 绘制基本折线图 本例选用如下测试数据集: 绘制方法是首先调用ggplot函数选定数据集,并在aes参数中指明横轴纵轴.然后调用条形图函数geom_line()便可绘制出基本折线图.R语言示例代码如下: # 基函数 ggplot(BOD, aes(x = Time, y = demand)) + # 折线图函数 geom_line()     运行结果:…
前言 ggplot2是R语言最为强大的作图软件包,强于其自成一派的数据可视化理念.当熟悉了ggplot2的基本套路后,数据可视化工作将变得非常轻松而有条理. 本文主要对ggplot2的可视化理念及开发套路做一个总体介绍,具体绘图方法(如折线图,柱状图,箱线图等)将在后面的文章中分别进行讲解. 核心理念 1. 将数据,数据相关绘图,数据无关绘图分离 这点可以说是ggplot2最为吸引人的一点.众所周知,数据可视化就是将我们从数据中探索的信息与图形要素对应起来的过程. ggplot2将数据,数据到图…
R语言 R是用于统计分析.绘图的语言和操作环境.R是属于GNU系统的一个自由.免费.源代码开放的软件,它是一个用于统计计算和统计制图的优秀工具. 特点介绍 •主要用于统计分析.绘图.数据挖掘 •R内置多种统计学及数字分析功能.R的功能也可以通过安装包(Packages,用户撰写的功能)增强. •因为S的血缘,R比其他统计学或数学专用的编程语言有更强的面向对象(面向对象程序设计)功能 官网:http://cran.r-project.org/ 其他介绍 •R的另一强项是绘图功能,制图具有印刷的素质…
数据结构 创建向量和矩阵 函数c(), length(), mode(), rbind(), cbind() 求平均值,和,连乘,最值,方差,标准差 函数mean(), sum(), min(), max(), var(), sd(), prod() 帮助文档 函数help() 生成向量 seq() 生成字母序列letters 新建向量 Which()函数,rev()函数,sort()函数 生成矩阵 函数matrix() 矩阵运算 函数t(),矩阵加减 矩阵运算 矩阵相乘,函数diag() 矩阵…
数据分析R语言 无意中发现网上的一个数据分析R应用教程,看了几集感觉还不错,本文做一个学习笔记(知识点来源:视频内容+R实战+自己的理解),视频详细的信息请参考http://www.itao521.com/course/34,非常不错的网站,站长的Q群是323370861(这个群的童鞋们都很给力,学习也很上进,各种团购买hadoop,nosql,spark的视频学习),我网站会员ID是515,也欢迎各方朋友交流,OK,开始        统计的一些基础概念,如下图所示,        数据分析常…
接R语言笔记3--实例1 R语言中的可视化函数分为两大类,探索性可视化(陌生数据集,不了解,需要探索里面的信息:偏重于快速,方便的工具)和解释性可视化(完全了解数据集,里面的故事需要讲解别人:偏重全面,美观的工具). R语言中的绘图包: graphics(自带) >探索性 lattice >探索性 ggplot2 >解释性 1.对x1进行直方图分析,绘制直方图hist()       2.探索各科成绩的关联关系,散点图绘制函数plot()            3.列联表分析,列联函数t…