Python & 机器学习之项目实践】的更多相关文章

机器学习是一项经验技能,经验越多越好.在项目建立的过程中,实践是掌握机器学习的最佳手段.在实践过程中,通过实际操作加深对分类和回归问题的每一个步骤的理解,达到学习机器学习的目的. 预测模型项目模板不能只通过阅读来掌握机器学习的技能,需要进行大量的练习.本文将介绍一个通用的机器学习的项目模板,创建这个模板总共有六个步骤.通过本文将学到: 端到端地预测(分类与回归)模型的项目结构.如何将前面学到的内容引入到项目中.如何通过这个项目模板来得到一个高准确度的模板.机器学习是针对数据进行自动挖掘,找出数据…
当今时代,开源是创新和技术快速发展的核心.本文来自 KDnuggets 的年度盘点,介绍了 2016 年排名前 20 的 Python 机器学习开源项目,在介绍的同时也会做一些有趣的分析以及谈一谈它们的发展趋势.和去年一样,KDnuggets 介绍了 GitHub 上最新的并且排名前 20 的 Python 机器学习开源项目.令人吃惊的是,去年一些最活跃的项目已经停滞不前了,也有一些项目跌出了前 20 名(在 contribution 和 commit 方面),当然,也有 13 个新项目进入了前…
原文:http://blog.csdn.net/zouxy09/article/details/48903179 一.概述 机器学习算法在近几年大数据点燃的热火熏陶下已经变得被人所“熟知”,就算不懂得其中各算法理论,叫你喊上一两个著名算法的名字,你也能昂首挺胸脱口而出.当然了,算法之林虽大,但能者还是有限,能适应某些环境并取得较好效果的算法会脱颖而出,而表现平平者则被历史所淡忘.随着机器学习社区的发展和实践验证,这群脱颖而出者也逐渐被人所认可和青睐,同时获得了更多社区力量的支持.改进和推广. 以…
在机器学习中,性能指标(Metrics)是衡量一个模型好坏的关键,通过衡量模型输出y_predict和y_true之间的某种“距离”得出的. 对学习器的泛化性能进行评估,不仅需要有效可行的试验估计方法,还需要有衡量模型泛化能力的评估价标准,这就是性能度量(performance measure).性能度量反映了任务需求,在对比不同模型的能力时,使用不同的性能度量往往会导致不的评判结果:这意味着模型的“好坏”是相对的,什么样的模型是好的,不仅取决于算法和数据,还决定于任务需求. 性能指标往往使我们…
Python机器学习实践指南 目 录 第1章Python机器学习的生态系统 1 1.1 数据科学/机器学习的工作 流程 2 1.1.1 获取 2 1.1.2 检查和探索 2 1.1.3 清理和准备 3 1.1.4 建模 3 1.1.5 评估 3 1.1.6 部署 3 1.2 Python库和功能 3 1.2.1 获取 4 1.2.2 检查 4 1.2.3 准备 20 1.2.4 建模和评估 26 1.2.5 部署 34 1.3 设置机器学习的环境 34 1.4 小结 34 第2章构建应用程序,发…
<Python 机器学习及实践–从零开始通往kaggle竞赛之路>很基础 主要介绍了Scikit-learn,顺带介绍了pandas.numpy.matplotlib.scipy. 本书代码基于python2.x.不过大部分可以通过修改print()来适应python3.5.x. 提供的代码默认使用 Jupyter Notebook,建议安装Anaconda3. 最好是到https://www.kaggle.com注册账号后,运行下第四章的代码,感受下. 监督学习: 2.1.1分类学习(Cla…
python断断续续的学了一段实践,基础课程终于看完了,现在跟着做三个小项目,第一个是外星人入侵的小游戏: 一 Pygame pygame 是一组功能强大而有趣的模块,可用于管理图形,动画乃至声音,让你轻松的开发出想要的游戏. 二 安装Pygame 只讲下在windows系统安装pygame,可以访问:https://bitbucket.org/pygame/pygame/downloads/ 如下图: 查找与你python匹配的安装程序,找不到可以去这个网站:https://www.lfd.u…
机器学习是近年来渐趋热门的一个领域,同时Python 语言经过一段时间的发展也已逐渐成为主流的编程语言之一.<Python机器学习实践指南>结合了机器学习和Python 语言两个热门的领域,通过利用两种核心的机器学习算法来将Python 语言在数据分析方面的优势发挥到极致. 共有10 章.第1 章讲解了Python 机器学习的生态系统,剩余9 章介绍了众多与机器学习相关的算法,包括各类分类算法.数据可视化技术.推荐引擎等,主要包括机器学习在公寓.机票.IPO 市场.新闻源.内容推广.股票市场.…
GitHub最著名的20个Python机器学习项目 我们分析了GitHub上的前20名Python机器学习项目,发现scikit-Learn,PyLearn2和NuPic是贡献最积极的项目.让我们一起在Github上探索这些流行的项目! Scikit-learn:Scikit-learn 是基于Scipy为机器学习建造的的一个Python模块,他的特色就是多样化的分类,回归和聚类的算法包括支持向量机,逻辑回归,朴素贝叶斯分类器,随机森林,Gradient Boosting,聚类算法和DBSCAN…
目录 第二章 2.3章末小结 @(Python机器学习及实践-----从零开始通往Kaggle竞赛之路) 第二章 2.3章末小结 1 机器学习模型按照使用的数据类型,可分为监督学习和无监督学习两大类. 监督学习主要包括分类和回归的模型. 分类:线性分类,支持向量机(SVM),朴素贝叶斯,k近邻,决策树,集成模型(随机森林(多个决策树)等). 回归:线性回归,支持向量机(SVM),k近邻,回归树,集成模型(随机森林(多个决策树)等). 无监督学习主要包括:数据聚类(k-means)和数据降维(主成…