GCD  nyoj 1007 (欧拉函数+欧几里得) GCD 时间限制:1000 ms  |  内存限制:65535 KB 难度:3   描述 The greatest common divisor GCD(a,b) of two positive integers a and b,sometimes written (a,b),is the largest divisor common to a and b,For example,(1,2)=1,(12,18)=6.(a,b) can be…
题目描述 给出 $n$ 和 $p$ ,求 $(\sum\limits_{i=1}^n\sum\limits_{j=1}^nij\gcd(i,j))\mod p$ . $n\le 10^{10}$ . 题解 欧拉函数(欧拉反演)+杜教筛 推式子: $$\begin{align}&\sum\limits_{i=1}^n\sum\limits_{j=1}^nij\gcd(i,j)\\=&\sum\limits_{i=1}^n\sum\limits_{j=1}^nij\sum\limits_{d|…
前导 在上面的博文中描述了基类中存在虚函数时,基类和派生类中虚函数表的结构. 在派生类也定义了虚函数时,函数表又是怎样的结构呢? 先看下面的示例代码: #include <iostream> using namespace std; class A { public: virtual void funcA(){ cout<<"A"<<endl; } }; class B { public: virtual void funcB(){ cout<…
多态性可分为两类:静态多态和动态多态.函数重载和运算符重载实现的多态属于静态多态,动态多态性是通过虚函数实现的. 每个含有虚函数的类有一张虚函数表(vtbl),表中每一项是一个虚函数的地址, 也就是说,虚函数表的每一项是一个虚函数的指针. 没有虚函数的C++类,是不会有虚函数表的. 两张图: 简单例子: 1 #include <iostream> 2 #include <windows.h> 3 4 using namespace std; 5 6 class base 7 { 8…
1.静态的数组空间char a[10];sizeof 不能用于1:函数类型 2:动态的数组空间new3:位字段 函数类型:int fun();sizeof(fun())计算的是返回类型的大小,并不是函数大小,函数要在运行时才知道其大小,而sizeof是编译时操符号     动态分配数组:sizeof()只是符号表,是编译的时候确定大小的.动态分配是运行过程中得到大小的,所以sizeof不能计算动态分配的数组大小.如:以下程序就动 态分配了数组a[N].数组的长度N可输入确定,也可用程序中的变量确…
题意:给一个N,和公式 求G(N). 分析:设F(N)= gcd(1,N)+gcd(2,N)+...gcd(N-1,N).则 G(N ) = G(N-1) + F(N). 设满足gcd(x,N) 值为 i 的且1<=x<=N-1的x的个数为 g(i,N). 则F(N)  = sigma{ i * g(i,N) }. 因为gcd(x,N) == i 等价于 gcd(x/i, N/i)  == 1,且满足gcd(x/i , N/i)==1的x的个数就是 N/i 的欧拉函数值.所以g(i,N) 的值…
题目链接:http://acm.hust.edu.cn/vjudge/contest/view.action?cid=70017#problem/O 题意是给你n,求所有gcd(i , j)的和,其中1<=i <j <n. 要是求gcd(n , x) = y的个数的话,那么就是求gcd(n/y , x/y) = 1的个数,也就是求n/y的欧拉函数.这里先预处理出欧拉函数,然后通过类似筛法的技巧筛选出答案累加起来. #include <iostream> #include &l…
分析:枚举每个数的贡献,欧拉函数筛法 #include <cstdio> #include <iostream> #include <ctime> #include <vector> #include <cmath> #include <map> #include <queue> #include <algorithm> #include <cstring> using namespace std;…
Given the value of N, you will have to find the value of G. The definition of G is given below:Here GCD(i, j) means the greatest common divisor of integer i and integer j.For those who have trouble understanding summation notation, the meaning of G i…
Given the value of N, you will have to find the value of G. The definition of G is given below:G =i<N∑i=1j∑≤Nj=i+1GCD(i, j)Here GCD(i, j) means the greatest common divisor of integer i and integer j.For those who have trouble understanding summation no…