洛谷 - P2568 - GCD - 欧拉函数】的更多相关文章

P2568 GCD 题目描述 给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x,y)有多少对. 输入输出格式 输入格式: 一个整数N 输出格式: 答案 输入输出样例 输入样例#1: 4 输出样例#1: 4 说明 对于样例\((2,2),(2,4),(3,3),(4,2)\) \(1<=N<=10^7\) 来源:bzoj2818 本题数据为洛谷自造数据,使用CYaRon耗时5分钟完成数据制作. Solution 方法1:莫比乌斯反演,方法和yy的gcd一样 方法2:…
https://www.luogu.org/problemnew/show/P2568 统计n以内gcd为质数的数的个数. 求 \(\sum\limits_p \sum\limits_{i=1}^{n}\sum\limits_{j=1}^{n} [gcd(i,j)==p]\) 一开始还以为要莫比乌斯反演. 推了半天不知道怎么求,遂看题解: $\sum\limits_p \sum\limits_{i=1}^{n}\sum\limits_{j=1}^{n} [gcd(i,j)==p] =\sum\l…
https://www.luogu.org/problemnew/show/P2158 好像以前有个妹子收割铲也是欧拉函数. 因为格点直线上的点,dx与dy的gcd相同,画个图就觉得是欧拉函数.但是要注意对称轴还有左下角那个破点! #include<bits/stdc++.h> using namespace std; #define ll long long const int MAXN=40000+5; int phi[MAXN]; int pri[MAXN],pritop; bool n…
题目链接:传送门 题目: 题目描述 给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x,y)有多少对. 输入输出格式 输入格式: 一个整数N 输出格式: 答案 输入输出样例 输入样例#: 复制 输出样例#: 复制 说明 对于样例(,),(,),(,),(,) <=N<=^ 来源:bzoj2818 本题数据为洛谷自造数据,使用CYaRon耗时5分钟完成数据制作. 看了好几天数论了,忍不住出来切切水题. 思路: 若已知x,y,因为gcd(x, y)为素数,令p = gc…
https://www.luogu.org/problemnew/show/P2568#sub 最喜欢题面简洁的题目了. 本题为求两个数的gcd是素数,那么我们将x和y拆一下, 假设p为$gcd(x,y)$,且p是一个素数,$x=a \times p , y = b \times p $. 然而要满足p的条件的话,a和b一定是互质的,满足$0 \le a,b \le \frac{n}{p} $ 这样的话我们可以枚举这个质数p,将小于$\frac{n}{p}$的数,以及与它互质的数加起来. 互质的…
2818: Gcd Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 4436  Solved: 1957[Submit][Status][Discuss] Description 给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x,y)有多少对. 1<=N<=10^7 uva上做过gcd(x,y)=1的题 gcd(x,y)=p ---> gcd(x/p,y/p)=1 每个质数做一遍行了 答案是欧拉函数的前缀和*2…
根据欧几里德算法,gcd(a,b)=gcd(a+b*t,b) 如果a和b互质,则a+b*t和b也互质,即与a互质的数对a取模具有周期性. 所以只要求出小于n且与n互质的元素即可. #include<stdio.h> #include<string.h> ; int pr[N],cnt; int gcd(int a,int b){ if(!b) return a; return gcd(b,a%b); } int main(){ int n,k; while(~scanf("…
GCD Time Limit: 1000MS   Memory Limit: 32768KB   64bit IO Format: %I64d & %I64u Submit Status Description The greatest common divisor GCD(a,b) of two positive integers a and b,sometimes written (a,b),is the largest divisor common to a and b,For examp…
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2818 题意:给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x,y)有多少对. 其实就是一个转化问题,求gcd(x, y) = k, 1 <= x, y <= n的对数等于求gcd(x, y) = 1, 1 <= x, y <= n/k的对数.那么接下来我们就只要枚举每个素数k=prime[i]了,然后用到欧拉函数就可以求出来了,Σ( 2*Σ(…
给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x,y)有多少对. 如果两个数的x,y最大公约数是z,那么x/z,y/z一定是互质的 然后找到所有的素数,然后用欧拉函数求一下前缀和就行 #include <iostream> #include <stdio.h> #include <string.h> #include <algorithm> using namespace std; ; const int INF=0x3f3f3…