网页去重之Simhash算法】的更多相关文章

Simhash算法是Google应用在网页去重中的一个常用算法,在开始讲解Simhash之前,先了解——什么是网页去重?为什么要进行网页去重?如何进行网页去重,其基本框架是什么?   网页去重,顾名思义,就是过滤掉重复的网页.统计结果表明,近似重复网页的数量占网页总数量的比例较高,即互联网上有很多的页面内容是完全一样的或是相近的(这个不难理解,比如对于某一事件的新闻报道,很多是大同小异的).基于这一实际情况,所以要进行网页去重.   那么如何进行网页去重呢?这就用到了Simhash算法. 去重算…
文本去重之SimHash算法 - pathenon的个人页面 - 开源中国社区 文本去重之SimHash算法…
SimHash是什么 SimHash是Google在2007年发表的论文<Detecting Near-Duplicates for Web Crawling >中提到的一种指纹生成算法或者叫指纹提取算法,被Google广泛应用在亿级的网页去重的Job中,作为locality sensitive hash(局部敏感哈希)的一种,其主要思想是降维,什么是降维? 举个通俗点的例子,一篇若干数量的文本内容,经过simhash降维后,可能仅仅得到一个长度为32或64位的二进制由01组成的字符串,这一点…
记得以前有人问过我,网页去重算法有哪些,我不假思索的说出了余弦向量相似度匹配,但如果是数十亿级别的网页去重呢?这下糟糕了,因为每两个网页都需要计算一次向量内积,查重效率太低了!我当时就想:论查找效率肯定是要考虑hash算法,相同字符串的hashcode肯定相同,不同字符串的hashcode却是大不相同,这也不符合要求啊,会不会存在一种算法能够使相似字符串的code值也相同或相似呢,于是就找到了Google的网页去重算法-SimHash.我们在使用SimHash算法前需要根据文档量级选择SimHa…
前几天去吃葫芦头的路上,大飞哥给详细的讲解了他在比较文本相似度实验时对Google的simhash方法高效的惊叹,回来特意去找了原文去拜读. Simhash 传统IR领域内文本相似度比较所采用的经典方法是文本相似度的向量夹角余弦,其主要思想是根据一个文章中出现词的词频构成一个向量,然后计算两篇文章对应向量的向量夹角.但由于有可能一个文章的特征向量词特别多导致整个向量维度很高,使得计算的代价太大,对于Google这种处理万亿级别的网页的搜索引擎而言是不可接受的,simhash算法的主要思想是降维,…
simhash进行文本查重http://blog.csdn.net/lgnlgn/article/details/6008498 Simhash算法原理和网页查重应用http://blog.jobbole.com/21928/…
摘  要  在搜索引擎的检索结果页面中,用户经常会得到内容相似的重复页面,它们中大多是由于网站之间转载造成的.为提高检索效率和用户满意度,提出一种基于特征向量的大规模中文近似网页检测算法DDW(Detect near-Duplicate WebPages ).试验证明,比起其他网页去重算法(I-Match),DDW具有很好的抵抗噪声的能力及近似线性的时间和空间复杂度,在大规模实验中获得良好测试结果. 关键词  网页去重算法   特征向量   近似网页   支持向量机 第一部分介绍现有去重算法:第…
simhash算法:海量千万级的数据去重 simhash算法及原理参考: 简单易懂讲解simhash算法 hash 哈希:https://blog.csdn.net/le_le_name/article/details/51615931 simhash算法及原理简介:https://blog.csdn.net/lengye7/article/details/79789206 使用SimHash进行海量文本去重:https://www.cnblogs.com/maybe2030/p/5203186…
SimHash算法 由于实验室和互联网基本没啥关系,也就从来没有关注过数据挖掘相关的东西.在实际工作中,第一次接触到匹配和聚类等工作,虽然用一些简单的匹配算法可以做小数据的聚类,但数据量达到一定的时候就束手无策了. 所以,趁着周末把这方面的东西看了看,做个笔记. 来历 google的论文“detecting near-duplicates for web crawling”--------simhash. Google采用这种算法来解决万亿级别的网页的去重任务. 基本思想 simhash算法的主…
马克·吐温曾经说过,所谓经典小说,就是指很多人希望读过,但很少人真正花时间去读的小说.这种说法同样适用于“经典”的计算机书籍. 最近一直在看LSH,不过由于matlab基础比较差,一直没搞懂.最近看的论文里几乎都是用simHash来实现LSH,从而进行ANN. 有空看看基于滑动窗口的论文相似性检测. 如何用matlab画出一个数列(函数)的收敛过程(菱形收敛.圆形收敛)? 学完分布式了,我打算自己学WordPress,建立自己的独立博客,放在云平台或者服务器空间,然后学着分析流量和负载均衡这一类…
搜集了快一个月的资料,虽然不完全懂,但还是先慢慢写着吧,说不定就有思路了呢. 开源的最大好处是会让作者对脏乱臭的代码有羞耻感. 当一个做推荐系统的部门开始重视[数据清理,数据标柱,效果评测,数据统计,数据分析]这些所谓的脏活累活,这样的推荐系统才会有救. 求教GitHub的使用. 简单不等于傻逼. 我为什么说累:我又是一个习惯在聊天中思考前因后果的人,所以整个大脑高负荷运转.不过这样真不好,学习学成傻逼了. 研一的最大收获是让我明白原来以前仰慕的各种国家自然基金项目,原来都是可以浑水摸鱼忽悠过去…
simhash是google用来处理海量文本去重的算法. google出品,你懂的. simhash最牛逼的一点就是将一个文档,最后转换成一个64位的字节,暂且称之为特征字,然后判断重复只需要判断他们的特征字的距离是不是<n(根据经验这个n一般取值为3),就可以判断两个文档是否相似. 原理 simhash值的生成图解如下: 大概花三分钟看懂这个图就差不多怎么实现这个simhash算法了.特别简单.谷歌出品嘛,简单实用. 算法过程大概如下: 将Doc进行关键词抽取(其中包括分词和计算权重),抽取出…
每每以为攀得众山小,可.每每又切实来到起点,大牛们,缓缓脚步来俺笔记葩分享一下吧,please~ --------------------------- <数据挖掘之道>摘录话语:虽然我比较执着于Rwordseg,并不代表各位看管执着于我的执着,推荐结巴分词包,小巧玲珑,没有那么多幺蛾子,而且R版本和python版本都有,除了词性标注等分词包必备功能以外,jiebaR还加入了一些基础的文本分析算法,比如提取关键字(TFIDF).分析文本相似性等等,真是老少咸宜. 同时官网也有一个在线jieba…
这篇文章主要讲simHash算法.这是一种LSH(Locality-Sensitive Hashing,局部敏感哈希)的简单实现.它是广泛用于数据去重的算法,可以用于相似网站.图片的检索.而且当两个样本差别并不大时,算法仍能起效.值得一提的是,该算法的时空复杂度不存在与维度有关的项,所以不会遭遇维度灾难,也可以在维数较高时优化kNN算法. 特征 此算法(LSH)具有双重性,它们似乎是相悖的: 对于几组不同的特征,hash相同(即冲突)的可能性要尽可能小.这也是hash基本的特征. 对于几组相似的…
短文本合并重复(去重)的简单有效做法 - 旁观者 - 博客园 短文本合并重复(去重)的简单有效做法 SimHash算法 - ACdreamer - 博客频道 - CSDN.NET SimHash算法…
xsank的快餐 » Python simhash算法解决字符串相似问题 Python simhash算法解决字符串相似问题…
SimHash原理 1.SimHash背景 SimHash算法来自于 GoogleMoses Charikar发表的一篇论文"detecting near-duplicates for web crawling" ,其主要思想是降维, 将高维的特征向量映射成低维的特征向量,通过两个向量的Hamming Distance(汉明距离)来确定文章是否重复或者高度近似. Hamming Distance: 又称汉明距离,在信息论中,两个等长字符串之间的汉明距离是两个字符串对应位置的不同字符的个…
Simhash算法: Simhash算法由Google的Charikar提出,是将一篇文档转化为n位的签名,通过比较签名的相似度来计算原文档的相似度.签名越相近,则文档越相近.因此,整个过程就不会涉及到原文档文本内容的两两比较,就不需要存储这些海量文档的内容. simhash算法的输入是一个向量,输出是一个 f 位的签名值.为了陈述方便,假设输入的是一个文档的特征集合,每个特征有一定的权重.比如特征可以是文档中的词,其权重可以是这个词出现的次数. simhash 算法如下:1,将一个 f 维的向…
首先感谢作者yanyiwu贡献的开源项目https://github.com/yanyiwu/simhash.在做项 目过程中,翻了一遍<这就是搜索引擎  核心技术详解>这本书的查重算法,在众多的算法中,我选择了simhash.这个算法的魅力在于, 它把文本内容的相似性,转换为哈希值的相似性,很好理 解,效率也高,再说,谷歌也用着.关于本算法的一些介绍,在yanyiwu大神的博客 http://yanyiwu.com/work/2014/01/30/simhash-shi-xian-xiang…
1.概述     跟SimHash一样,MinHash也是LSH的一种,可以用来快速估算两个集合的相似度.MinHash由Andrei Broder提出,最初用于在搜索引擎中检测重复网页.它也可以应用于大规模聚类问题.   2.Jaccard index       在介绍MinHash之前,我们先介绍下Jaccard index.   Jaccard index是用来计算相似性,也就是距离的一种度量标准.假如有集合A.B,那么,     也就是说,集合A,B的Jaccard系数等于A,B中共同…
来源:http://my.oschina.net/pathenon/blog/65210 1.概述     跟SimHash一样,MinHash也是LSH的一种,可以用来快速估算两个集合的相似度.MinHash由Andrei Broder提出,最初用于在搜索引擎中检测重复网页.它也可以应用于大规模聚类问题.   2.Jaccard index       在介绍MinHash之前,我们先介绍下Jaccard index.       也就是说,集合A,B的Jaccard系数等于A,B中共同拥有的…
做个一个简单的批量下载插件叫“挖一下”, 正如插件的名字一样,采集网页里面的所有图片,根据筛选条件过滤不需要的图片,最后下载选中的图片. 索性把网页也一起给截了,截屏分两种: 1.可见内容截屏 2.完整网页截屏(包括可见和不可见) 可见内容截屏: 实现原理:直接通过chrome自带的截屏方法(chrome.tabs.captureVisibleTab),回调函数返回图片类型和数据信息 chrome.tabs.captureVisibleTab({format:'png'}, function(s…
一个牛人分享的,放在github上,用java实现,网络上还有很多用ruby写的   https://github.com/commoncrawl/commoncrawl/blob/master/src/org/commoncrawl/util/shared/SimHash.java…
http://2588084.blog.51cto.com/2578084/558873…
在之前的两篇博文分别介绍了常用的hash方法([Data Structure & Algorithm] Hash那点事儿)以及局部敏感hash算法([Algorithm] 局部敏感哈希算法(Locality Sensitive Hashing)),本文介绍的SimHash是一种局部敏感hash,它也是Google公司进行海量网页去重使用的主要算法. 1. SimHash与传统hash函数的区别 传统的Hash算法只负责将原始内容尽量均匀随机地映射为一个签名值,原理上仅相当于伪随机数产生算法.传统…
阅读目录 1. SimHash与传统hash函数的区别 2. SimHash算法思想 3. SimHash流程实现 4. SimHash签名距离计算 5. SimHash存储和索引 6. SimHash存储和索引 7. 参考内容 在之前的两篇博文分别介绍了常用的hash方法([Data Structure & Algorithm] Hash那点事儿)以及局部敏感hash算法([Algorithm] 局部敏感哈希算法(Locality Sensitive Hashing)),本文介绍的SimHas…
阅读目录 1. SimHash与传统hash函数的区别 2. SimHash算法思想 3. SimHash流程实现 4. SimHash签名距离计算 5. SimHash存储和索引 6. SimHash存储和索引 7. 参考内容 在之前的两篇博文分别介绍了常用的hash方法([Data Structure & Algorithm] Hash那点事儿)以及局部敏感hash算法([Algorithm] 局部敏感哈希算法(Locality Sensitive Hashing)),本文介绍的SimHas…
阅读目录 1. SimHash与传统hash函数的区别 2. SimHash算法思想 3. SimHash流程实现 4. SimHash签名距离计算 5. SimHash存储和索引 6. SimHash存储和索引 7. 参考内容 在之前的两篇博文分别介绍了常用的hash方法([Data Structure & Algorithm] Hash那点事儿)以及局部敏感hash算法([Algorithm] 局部敏感哈希算法(Locality Sensitive Hashing)),本文介绍的SimHas…
阅读目录 1. SimHash与传统hash函数的区别 2. SimHash算法思想 3. SimHash流程实现 4. SimHash签名距离计算 5. SimHash存储和索引 6. SimHash存储和索引 7. 参考内容 在之前的两篇博文分别介绍了常用的hash方法([Data Structure & Algorithm] Hash那点事儿)以及局部敏感hash算法([Algorithm] 局部敏感哈希算法(Locality Sensitive Hashing)),本文介绍的SimHas…
原文:https://blog.csdn.net/Tencent_TEG/article/details/103021226 提到hash,相信大多数同学都不会陌生,之前很火现在也依旧很火的技术区块链背后的底层原理之一就是hash,下面就从hash算法的原理和实际应用等几个角度,对hash算法进行一个讲解. 1.什么是Hash Hash也称散列.哈希,对应的英文都是Hash.基本原理就是把任意长度的输入,通过Hash算法变成固定长度的输出.这个映射的规则就是对应的Hash算法,而原始数据映射后的…