1. 什么是fastText 英语单词通常有其内部结构和形成⽅式.例如,我们可以从"dog""dogs"和"dogcatcher"的字⾯上推测它们的关系.这些词都有同⼀个词根"dog",但使⽤不同的后缀来改变词的含义.而且,这个关联可以推⼴⾄其他词汇. 在word2vec中,我们并没有直接利⽤构词学中的信息.⽆论是在跳字模型还是连续词袋模型中,我们都将形态不同的单词⽤不同的向量来表⽰.例如,"dog"和&q…
摘要 NHibernate的Session的管理涉及到NHibernate的两个最重要的对象ISessionFactory和ISession.ISessionFactory的生成非常消耗资源,通常都在应用程序启动的时候生成,并使用单例模式,被应用程序的所有线程共享.ISession的生成虽然没有ISessionFactory那么消耗资源,但是Session中保存了一级缓存池,如果每次使用到ISession的时候都生成新的ISession对象,而且这样的操作频率很大的时候,也会一定程度上大量消耗内…
什么是FastText FastText是Facebook于2016年开源的一个词向量计算和文本分类工具,它提出了子词嵌入的方法,试图在词嵌入向量中引入构词信息.一般情况下,使用fastText进行文本分类的同时也会产生词的embedding,即embedding是fastText分类的产物. FastText流程 FastText的架构图为: 分为输入层.隐含层.输出层,下面分别介绍这三层: 输入层 输入层包含三类特征: 全词特征,也就是每个词的完整词嵌入向量: 字符n-gram特征,例如对于…
词嵌入进阶 在"Word2Vec的实现"一节中,我们在小规模数据集上训练了一个 Word2Vec 词嵌入模型,并通过词向量的余弦相似度搜索近义词.虽然 Word2Vec 已经能够成功地将离散的单词转换为连续的词向量,并能一定程度上地保存词与词之间的近似关系,但 Word2Vec 模型仍不是完美的,它还可以被进一步地改进: 子词嵌入(subword embedding):FastText 以固定大小的 n-gram 形式将单词更细致地表示为了子词的集合,而 BPE (byte pair…
Office 365 开发概览系列文章和教程 原文于2017年2月26日首发于LinkedIn,请参考链接 引子 之前我在Office 365技术社群(O萌)中跟大家提到,3月初适逢Visual Studio 2017隆重发布以及20周年纪念,我想要发起一次与Office 365开发相关的活动,一方面也是向Visual Studio致敬:另一方面,我在加入微软之前,有相当长的一段时间都是从事与Office平台定制和应用系统开发的工作(最早是做VBA的开发,后来有做过VSTO,以及SharePoi…
作者:韩信子@ShowMeAI,路遥@ShowMeAI,奇异果@ShowMeAI 教程地址:http://www.showmeai.tech/tutorials/36 本文地址:http://www.showmeai.tech/article-detail/249 声明:版权所有,转载请联系平台与作者并注明出处 收藏ShowMeAI查看更多精彩内容 ShowMeAI为斯坦福CS224n<自然语言处理与深度学习(Natural Language Processing with Deep Learn…
统计角度窥视模型概念 作者:白宁超 2016年7月18日17:18:43 摘要:写本文的初衷源于基于HMM模型序列标注的一个实验,实验完成之后,迫切想知道采用的序列标注模型的好坏,有哪些指标可以度量.于是,就产生了对这一专题进度学习总结,这样也便于其他人参考,节约大家的时间.本文依旧旨在简明扼要梳理出模型评估核心指标,重点达到实用.本文布局如下:第一章采用统计学习角度介绍什么是学习模型以及如何选择,因为现今的自然语言处理方面大都采用概率统计完成的,事实证明这也比规则的方法好.第二章采用基于数据挖…
http://3g.163.com/all/article/DM995J240511AQHO.html 选自the Gradient 作者:Sebastian Ruder 机器之心编译 计算机视觉领域常使用在 ImageNet 上预训练的模型,它们可以进一步用于目标检测.语义分割等不同的 CV 任务.而在自然语言处理领域中,我们通常只会使用预训练词嵌入向量编码词汇间的关系,因此也就没有一个能用于整体模型的预训练方法.Sebastian Ruder 表示语言模型有作为整体预训练模型的潜质,它能由浅…
摘要:今天带领大家学习自然语言处理中的词嵌入的内容. 本文分享自华为云社区<[MindSpore易点通]深度学习系列-词嵌入>,作者:Skytier. 1 特征表示 在自然语言处理中,有一个很关键的概念是词嵌入,这是语言表示的一种方式,可以让算法自动的理解一些同类别的词,比如苹果.橘子,比如袜子.手套. one-hot向量 比如我们通常会说:"I want a glass of orange juice."但如果算法并不知道apple和orange的类似性(这两个one-h…
参考 1. Word Representation 之前介绍用词汇表表示单词,使用one-hot 向量表示词,缺点:它使每个词孤立起来,使得算法对相关词的泛化能力不强. 从上图可以看出相似的单词分布距离较近,从而也证明了Word Embeddings能有效表征单词的关键特征. 2. 词嵌入(word embedding) Transfer learning and word embedding: 从海量词汇库中学习word embeddings(即所有单词的特征向量),或者从网上下载预训练好的w…