SystemML大规模机器学习,优化算子融合方案的研究 摘要 许多大规模机器学习(ML)系统允许通过线性代数程序指定定制的ML算法,然后自动生成有效的执行计划.在这种情况下,优化的机会融合基本算子的熔合链的算子是无处不在的.这些机会包括 (1)更少的物化中间表示 (2)更少的输入数据扫描,以及 (3)利用算子链上的稀疏性. 自动算子融合消除了手写的需要 融合运算符并显著提高 复杂的或以前看不见的算子链.然而,现有的融合启发式算法,很难找到好的融合方法. 复杂DAG计划或局部分布式算子的混合计划.…
MXNet 图优化与算子融合Graph Optimization and Quantization based on subgraph and MKL-DNN Purpose MKL-DNN引入了两个高级特性:融合计算和降精度核.这些特性可以显著地提高各种深度学习拓扑在CPU上的推理性能. 然而,MXNet由于图表示的局限性和以往缺乏图的优化,仍然不能从中受益.幸运的是,MXNet的新子图特性使这些改进现在成为可能. 本文说明基于子图的解决方案,以利用MKL-DNN在MXNet中的功能.一般来说…
TVM图优化与算子融合 计算图的定义 Computational graphs: a common way to represent programs in deep learning frameworks 对于图优化来说,有很多种图优化手段: Operator Fusion Constant Parameter Path Pre-Computation Static Memory Reuse Analysis Data Layout Transformation AlterOpLayout S…
本文转自:http://mp.weixin.qq.com/s/Xe3g2OSkE3BpIC2wdt5J-A 谷歌大规模机器学习:模型训练.特征工程和算法选择 (32PPT下载) 2017-01-26 新智元 1新智元编译   来源:ThingsExpo.Medium 作者:Natalia Ponomareva.Gokula Krishnan Santhanam 整理&编译:刘小芹.李静怡.胡祥杰 新智元日前宣布,获6家顶级机构总额达数千万元的PreA轮融资,蓝驰创投领投,红杉资本中国基金.高瓴智…
http://www.cbdio.com/BigData/2015-08/27/content_3750170.htm 1.背景 CTR预估,广告点击率(Click-Through Rate Prediction)是互联网计算广告中的关键环节,预估准确性直接影响公司广告收入.CTR预估中用的最多的模型是LR(Logistic Regression)[1],LR是广义线性模型,与传统线性模型相比,LR使用了Logit变换将函数值映射到0~1区间 [2],映射后的函数值就是CTR的预估值.LR,逻辑…
1.背景 CTR预估,广告点击率(Click-Through Rate Prediction)是互联网计算广告中的关键环节,预估准确性直接影响公司广告收入.CTR预估中用的最多的模型是LR(Logistic Regression)[1],LR是广义线性模型,与传统线性模型相比,LR使用了Logit变换将函数值映射到0~1区间 [2],映射后的函数值就是CTR的预估值.LR,逻辑回归模型,这种线性模型很容易并行化,处理上亿条训练样本不是问题,但线性模型学习能力有限,需要大量特征工程预先分析出有效的…
1. 背景 CTR预估(Click-Through Rate Prediction)是互联网计算广告中的关键环节,预估准确性直接影响公司广告收入.CTR预估中用的最多的模型是LR(Logistic Regression)[1],LR是广义线性模型,与传统线性模型相比,LR使用了Logit变换将函数值映射到0~1区间[2],映射后的函数值就是CTR的预估值.LR这种线性模型很容易并行化,处理上亿条训练样本不是问题,但线性模型学习能力有限,需要大量特征工程预先分析出有效的特征.特征组合,从而去间接增…
预测模型在 LinkedIn 的产品中被广泛应用,如 Feed.广告.工作推荐.邮件营销.用户搜索等.这些模型在提升用户体验时起到了重要的作用.为了满足建模需求,LinkedIn 开发并且开源了 Photon-ML 大规模机器学习库.Photon-ML 基于 Apache Spark,能快速处理海量数据并具有强大的模型训练和诊断功能. 本文将从以下三个方面进行介绍: LinkedIn 产品使用预测模型的情况 分享预测模型系统在实践中的成功经验和踩坑教训 案例研究 LinkedIn 产品使用预测模…
大规模机器学习(Large Scale Machine Learning) 大型数据集的学习(Learning With Large Datasets) 如果你回顾一下最近5年或10年的机器学习历史.学习算法现在比5年前更好地工作的原因之一就是我们现在拥有了大量的数据,可以用来训练我们的算法.那么为什么要使用这么大的数据集呢?我们已经看到,获得高性能机器学习系统的最佳方法之一就是采用低偏差的学习算法,并且用大量的数据进行训练. 因此,如上图中,我们已经看到过的一个早期的在可混淆的单词之间进行分类…
推荐系统遇上深度学习(十)--GBDT+LR融合方案实战 0.8012018.05.19 16:17:18字数 2068阅读 22568 推荐系统遇上深度学习系列:推荐系统遇上深度学习(一)--FM模型理论和实践:https://www.jianshu.com/p/152ae633fb00推荐系统遇上深度学习(二)--FFM模型理论和实践:https://www.jianshu.com/p/781cde3d5f3d推荐系统遇上深度学习(三)--DeepFM模型理论和实践:https://www.…