TVM优化GPU机器翻译】的更多相关文章

TVM优化GPU机器翻译 背景 神经机器翻译(NMT)是一种自动化的端到端方法,具有克服传统基于短语的翻译系统中的弱点的潜力.最近,阿里巴巴集团正在为全球电子商务部署NMT服务. 将Transformer用作NMT系统的关键技术,相对于基于经典RNN / LSTM的模型具有同等(甚至更高)的精度,对于高效的离线训练更为友好.尽管Transformer在离线训练阶段很友好,打破了跨时间步长的依赖性,但在线推理效率不高.在生产环境中,已经发现,初始版本的Transformer的推理速度约为1.5倍至…
TensorFlow+TVM优化NMT神经机器翻译 背景 神经机器翻译(NMT)是一种自动化的端到端方法,具有克服传统基于短语的翻译系统中的弱点的潜力.本文为全球电子商务部署NMT服务. 目前,将Transformer用作NMT系统的主要骨干,对基于经典RNN / LSTM模型的同等(甚至更高)精度进行高效的离线训练更为友好.尽管Transformer在离线训练阶段很友好,打破了跨时间步长的依赖性,但在线推理效率不高.在生产环境中,已经发现,初始版本的Transformer的推理速度约为1.5倍…
TVM 优化 ARM GPU 上的移动深度学习 随着深度学习的巨大成功,将深度神经网络部署到移动设备的需求正在迅速增长.与桌面平台上所做的类似,在移动设备中使用 GPU 既有利于推理速度,也有利于能源效率.但是,大多数现有的深度学习框架并不很好地支持移动 GPU.难点在于移动 GPU 架构和桌面 GPU 架构之间的区别.这意味着在移动 GPU 上进行优化需要特别努力.非平凡的额外工作最终导致移动 GPU 在大多数深度学习框架中支持不力. TVM 通过引入统一的 IR 堆栈,解决为不同硬件部署的困…
TVM优化Deep Learning GPU算子 高效的深度学习算子是深度学习系统的核心.通常,这些算子很难优化,需要HPC专家付出巨大的努力. 端到端张量IR / DSL堆栈TVM使这一过程变得更加容易. 如何在TVM的帮助下编写高性能GPU运算符内核.本文以深度卷积(即topi.nn.depthwise_conv2d_nchw)为例,并演示如何在tensorflow中改进已经手工优化的CUDA内核.在不同的工作负载下,最终版本比tf-1.2中优化的内核快2到4倍,在启用了算子融合的情况下,最…
优化-GPUGPU与CPU不同,所以侧重点自然也不一样.GPU的瓶颈主要存在在如下的方面: 填充率,可以简单的理解为图形处理单元每秒渲染的像素数量.像素的复杂度,比如动态阴影,光照,复杂的shader等等几何体的复杂度(顶点数量)当然还有GPU的显存带宽那么针对以上4点,其实仔细分析我们就可以发现,影响的GPU性能的无非就是2大方面,一方面是顶点数量过多,像素计算过于复杂.另一方面就是GPU的显存带宽.那么针锋相对的两方面举措也就十分明显了. 减少顶点数量,简化计算复杂度.压缩图片,以适应显存带…
博主因为工作其中的须要,開始学习 GPU 上面的编程,主要涉及到的是基于 GPU 的深度学习方面的知识.鉴于之前没有接触过 GPU 编程.因此在这里特地学习一下 GPU 上面的编程. 有志同道合的小伙伴,欢迎一起交流和学习.我的邮箱: caijinping220@gmail.com .使用的是自己的老古董笔记本上面的 Geforce 103m 显卡,尽管显卡相对于如今主流的系列已经很的弱,可是对于学习来说.还是能够用的.本系列博文也遵从由简单到复杂,记录自己学习的过程. 0. 文件夹 GPU 编…
博主因为工作其中的须要,開始学习 GPU 上面的编程,主要涉及到的是基于 GPU 的深度学习方面的知识,鉴于之前没有接触过 GPU 编程.因此在这里特地学习一下 GPU 上面的编程.有志同道合的小伙伴.欢迎一起交流和学习,我的邮箱: caijinping220@gmail.com . 使用的是自己的老古董笔记本上面的 Geforce 103m 显卡,尽管显卡相对于如今主流的系列已经很的弱.可是对于学习来说,还是能够用的.本系列博文也遵从由简单到复杂.记录自己学习的过程. 0. 文件夹 GPU 编…
TVM:一个端到端的用于开发深度学习负载以适应多种硬件平台的IR栈  本文对TVM的论文进行了翻译整理 深度学习如今无处不在且必不可少.这次创新部分得益于可扩展的深度学习系统,比如 TensorFlow.MXNet.Caffe 和 PyTorch.大多数现有系统针对窄范围的服务器级 GPU 进行了优化,并且需要在其他平台(如手机.IoT 设备和专用加速器(FPGA. ASIC))上部署大量工作.随着深度学习框架和硬件后端数量不断增加,我们提出了一个统一的中间表征(IR)堆栈,可以弥补以生产力为中…
TVM如何训练TinyML 机器学习研究人员和从业人员对"裸机"(低功耗,通常没有操作系统)设备产生了广泛的兴趣.尽管专家已经有可能在某些裸机设备上运行某些模型,但是为各种设备优化模型的挑战非常艰巨,通常需要手动优化设备特定的库.对于那些没有Linux支持的平台,不存在用于部署模型的可扩展解决方案.因此,为了定位新设备,开发人员必须实现一次性的定制软件堆栈,以管理系统资源和调度模型执行. 机器学习软件的手动优化不是裸机设备领域独有的.实际上,对于使用其它硬件后端(例如GPU和FPGA)…
桥接PyTorch和TVM 人工智能最引人入胜的一些应用是自然语言处理.像BERT或GPT-2之类的模型及其变体,可以获住足够多的文本信息. 这些模型属于称为Transformers的神经网络类体系结构. HuggingFace transformers library是实现最受欢迎的库之一. 与已经高度优化的实现的卷积模型或LSTM相比,对于Transformers而言,情况并非如此.本文探索TVM如何填补空白.分两个步骤进行操作: 首先,在TVM上,使用BERT inference推理和调优…