初始MapReduce】的更多相关文章

一.神马是高大上的MapReduce MapReduce是Google的一项重要技术,它首先是一个编程模型,用以进行大数据量的计算.对于大数据量的计算,通常采用的处理手法就是并行计算.但对许多开发者来说,自己完完全全实现一个并行计算程序难度太大,而MapReduce就是一种简化并行计算的编程模型,它使得那些没有多有多少并行计算经验的开发人员也可以开发并行应用程序.这也就是MapReduce的价值所在,通过简化编程模型,降低了开发并行应用的入门门槛. 1.1 MapReduce是什么 Hadoop…
MapReduce 概述 MapReduce是一个分布式运算程序的编程框架,是用户开发“基于Hadoop的数据分析应用"的核心框架 MapReduce核心功能是将用户编写的业务逻辑代码和自带默认组件整合成一个完整的分布式运算程序,并发运行在一个Hadoop集群上. MapRedcue优点: 海量数据(PB级)离线处理&易开发&易运行&高容错性 MapReduce缺点: 实时流式计算做不到 不擅长DAG(有向图)计算:多个应用程序存在依赖关系,后一个程序的输入为前一个的输出…
Hdfs是根/目录,windows是每一个盘符, 1  从Linux里传一个到,hdfs里去 2  从hdfs里下一个到,linux里去 想从hdfs里,下载到linux, 涨知识,记住,hdfs是建立在linux上, 现在,hdfs里还有jdk-7u65-linux-i586.tar.gz,好,linux里,没有了jdk-7u65-linux-i586.tar.gz. 在抽象的hdfs文件系统里,存在datanode那个机器的抽象的hdfs文件系统里, 其实,刚下载,是从datanode文件夹…
2. MapReduce 简介 MapReduce 实际上是分为两个过程 map 过程 : 数据的读取 reduce 过程 : 数据的计算 并行计算是一个非常复杂的过程, mapreduce是一个并行框架. 在Hadoop中,每个MapReduce任务都被初始化为一个Job,每个Job又可以分为两种阶段:map阶段和reduce阶段.这两个阶段分别用两个函数表示,即map函数和reduce函数 我们可以看下典型的官方列子 开发 用idea 开发开发 pom.xml 添加依赖 <dependenc…
文件是 MapReduce 任务数据的初始存储地.正常情况下,输入文件一般是存储在 HDFS 里面.这些文件的格式可以是任意的:我们可以使用基于行的日志文件, 也可以使用二进制格式,多行输入记录或者其它一些格式.这些文件一般会很大,达到数十GB,甚至更大.那么 MapReduce 是如何读取这些数据的呢?下面我们来学习 InputFormat 接口 1.InputFormat接口 InputFormat接口决定了输入文件如何被 Hadoop分块(split up)与接受.InputFormat…
MapReduce的Shuffle过程介绍 Shuffle的本义是洗牌.混洗,把一组有一定规则的数据尽量转换成一组无规则的数据,越随机越好.MapReduce中的Shuffle更像是洗牌的逆过程,把一组无规则的数据尽量转换成一组具有一定规则的数据. 为什么MapReduce计算模型需要Shuffle过程?我们都知道MapReduce计算模型一般包括两个重要的阶段:Map是映射,负责数据的过滤分发:Reduce是规约,负责数据的计算归并.Reduce的数据来源于Map,Map的输出即是Reduce…
在Hadoop中,每个MapReduce任务都被初始化为一个job,每个job又可分为两个阶段:map阶段和reduce阶段.这两个阶段分别用两个函数来表示.Map函数接收一个<key,value>形式的输入,然后同样产生一个<ey,value>形式的中间输出,Hadoop会负责将所有具有相同中间key值的value集合在一起传递给reduce函数,reduce函数接收一个如<key,(list of values)>形式的输入,然后对这个value集合进行处理,每个r…
MapReduce MongoDB中的MapReduce相当于关系数据库中的group by.使用MapReduce要实现两个函数Map和Reduce函数.Map函数调用emit(key,value),遍历 Collection中所有的记录,将key与value传递给Reduce函数进行处理. Mapreduce使用惯用的javascript操作来做map和reduce操作,因此Mapreduce的灵活性和复杂性都会比aggregate 更高一些,并且相对aggregate 而言更消耗性能: 语…
InputFormat主要用于描述输入数据的格式(我们只分析新API,即org.apache.hadoop.mapreduce.lib.input.InputFormat),提供以下两个功能: (1)数据切分:按照某个策略将输入数据切分成若干个split,以便确定MapTask个数以及对应的split: (2)为Mapper提供输入数据:读取给定的split的数据,解析成一个个的key/value对,供mapper使用. InputFormat有两个比较重要的方法:(1)List<InputSp…
默认的mapper是IdentityMapper,默认的reducer是IdentityReducer,它们将输入的键和值原封不动地写到输出中. 默认的partitioner是HashPartitinoer,它根据每条记录的键进行哈希操作来分区. 输入文件:文件是MapReduce任务的数据的初始存储地.正常情况下,输入文件一般是存在HDFS里.这些文件的格式可以是任意的:我们可以使用基于行的日志文件,也可以使用二进制格式,多行输入记录或其它一些格式.这些文件会很大—数十G或更大. 小文件与Co…