最近回顾神经网络的知识,简单做一些整理,归档一下神经网络优化算法的知识.关于神经网络的优化,吴恩达的深度学习课程讲解得非常通俗易懂,有需要的可以去学习一下,本人只是对课程知识点做一个总结.吴恩达的深度学习课程放在了网易云课堂上,链接如下(免费): https://mooc.study.163.com/smartSpec/detail/1001319001.htm 神经网络最基本的优化算法是反向传播算法加上梯度下降法.通过梯度下降法,使得网络参数不断收敛到全局(或者局部)最小值,但是由于神经网络层…
1.mini-batch梯度下降 在前面学习向量化时,知道了可以将训练样本横向堆叠,形成一个输入矩阵和对应的输出矩阵: 当数据量不是太大时,这样做当然会充分利用向量化的优点,一次训练中就可以将所有训练样本涵盖,速度也会较快.但当数据量急剧增大,达到百万甚至更大的数量级时,组成的矩阵将极其庞大,直接对这么大的的数据作梯度下降,可想而知速度是快不起来的.故这里将训练样本分割成较小的训练子集,子集就叫mini-batch.例如:训练样本数量m=500万,设置mini-batch=1000,则可以将训练…
BP(Back Propagation)网络是1985年由Rumelhart和McCelland为首的科学家小组提出,是一种按误差逆传播算法训练的多层前馈网络,是目前应用最广泛的神经网络模型之一. BP网络能学习和存贮大量的输入-输出模式映射关系,而无需事前揭示描述这种映射关系的数学方程.它的学习规则是使用最速下降法,通过反向传播来不断调整网络的权值和阈值,使网络的误差平方和最小. BP神经网络模型拓扑结构包括输入层(input).隐层(hide layer)和输出层(output layer)…
BP(Back Propagation)网络是1985年由Rumelhart和McCelland为首的科学家小组提出,是一种按误差逆传播算法训练的多层前馈网络,是目前应用最广泛的神经网络模型之一. BP网络能学习和存贮大量的输入-输出模式映射关系,而无需事前揭示描述这种映射关系的数学方程.它的学习规则是使用最速下降法,通过反向传播来不断调整网络的权值和阈值,使网络的误差平方和最小. BP神经网络模型拓扑结构包括输入层(input).隐层(hide layer)和输出层(output layer)…
之前在tensorflow上和caffe上都折腾过CNN用来做视频处理,在学习tensorflow例子的时候代码里面给的优化方案默认很多情况下都是直接用的AdamOptimizer优化算法,如下: optimizer = tf.train.AdamOptimizer(learning_rate=lr).minimize(cost) 1 但是在使用caffe时solver里面一般都用的SGD+momentum,如下: base_lr: 0.0001 momentum: 0.9 weight_dec…
在神经网络中,广泛的使用反向传播和梯度下降算法调整神经网络中参数的取值. 梯度下降和学习率: 假设用 θ 来表示神经网络中的参数, J(θ) 表示在给定参数下训练数据集上损失函数的大小. 那么整个优化过程就是寻找一个参数θ, 使得J(θ) 的值最小, 也就是求J(θ) 的最小值 损失函数J(θ)的梯度 = ∂ J(θ) / ∂ θ 此时定义一个学习率 η 梯度下降法更新参数的公式为: θn+1 = θn - η ( ∂ J(θn) / ∂ θn ) 将这个公式循环的重复下去,θ的值就从高处逐渐向…
1. 训练误差和泛化误差 机器学习模型在训练数据集和测试数据集上的表现.如果你改变过实验中的模型结构或者超参数,你也许发现了:当模型在训练数据集上更准确时,它在测试数据集上却不⼀定更准确.这是为什么呢? 因为存在着训练误差和泛化误差: 训练误差:模型在训练数据集上表现出的误差. 泛化误差:模型在任意⼀个测试数据样本上表现出的误差的期望,并常常通过测试数据集上的误差来近似. 训练误差的期望小于或等于泛化误差.也就是说,⼀般情况下,由训练数据集学到的模型参数会使模型在训练数据集上的表现优于或等于在测…
记录内容来自<Tensorflow实战Google一书>及MOOC人工智能实践 http://www.icourse163.org/learn/PKU-1002536002?tid=1002700003 --梯度下降算法主要用于优化单个参数的取值, 反向传播算法给出了一个高效的方式在所有参数上使用梯度下降算法. 从而神经网络模型在训练数据的孙师函数尽可能小. --反向传播算法是训练神经网络的核心算法, 它可以跟据定义好的损失函数优化神经网络中参数的取值, 从而使神经网络模型在训练数据集上的损失…
转载  https://blog.csdn.net/itchosen/article/details/77200322 各种神经网络优化算法:从梯度下降到Adam方法     在调整模型更新权重和偏差参数的方式时,你是否考虑过哪种优化算法能使模型产生更好且更快的效果?应该用梯度下降,随机梯度下降,还是Adam方法? 这篇文章介绍了不同优化算法之间的主要区别,以及如何选择最佳的优化方法. 什么是优化算法? 优化算法的功能,是通过改善训练方式,来最小化(或最大化)损失函数E(x). 模型内部有些参数…
Coursera吴恩达<优化深度神经网络>课程笔记(2)-- 优化算法 深度机器学习中的batch的大小 深度机器学习中的batch的大小对学习效果有何影响? 1. Mini-batch gradient descent SGD VS BGD VS MBGD 3. 指数加权平均(Exponentially weighted averages) 这种滑动平均算法称为指数加权平均(exponentially weighted average)其一般形式为: 值决定了指数加权平均的天数,近似表示为:…