目标检测模型中性能评估的几个重要参数有精确度,精确度和召回率.本文中我们将讨论一个常用的度量指标:均值平均精度,即MAP. 在二元分类中,精确度和召回率是一个简单直观的统计量,但是在目标检测中有所不同的是及时我们的物体检测器在图像中检测到物体,如果我们仍无法找到它所在的图像中的哪个位置也是无用的.由于我们需要预测图像中的目标的发生和位置,所以在计算精确度和召回率与普通的二分类有所不同. 一.目标检测问题目标检测问题是指: 给定一个图像,找到其中的目标,找到它们的位置,并且对目标进行分类.目标检测…
在机器学习领域,对于大多数常见问题,通常会有多个模型可供选择.当然,每个模型会有自己的特性,并会受到不同因素的影响而表现不同. 每个模型的好坏是通过评价它在某个数据集上的性能来判断的,这个数据集通常被叫做“验证/测试”数据集.这个性能由不同的统计量来度量,包括准确率( accuracy ).精确率( precision ).召回率( recall )等等.选择我们会根据某个特定的应用场景来选择相应的统计量.而对每个应用来说,找到一个可以客观地比较模型好坏的度量标准至关重要. 在本文,我们将会讨论…
专栏目录: 第一章:PyTorch之简介与下载 PyTorch简介 PyTorch环境搭建 第二章:PyTorch之60分钟入门 PyTorch入门 PyTorch自动微分 PyTorch神经网络 PyTorch图像分类器 PyTorch数据并行处理 第三章:PyTorch之入门强化 数据加载和处理 PyTorch小试牛刀 迁移学习 混合前端的seq2seq模型部署 保存和加载模型 第四章:PyTorch之图像篇 微调基于torchvision 0.3的目标检测模型 微调TorchVision模…
微调torchvision 0.3的目标检测模型 本文将微调在 Penn-Fudan 数据库中对行人检测和分割的已预先训练的 Mask R-CNN 模型.它包含170个图像和345个行人实例,说明如何在 torchvision 中使用新功能,以便在自定义数据集上训练实例分割模型. 1.定义数据集 对于训练对象检测的引用脚本,实例分割和人员关键点检测,要求能够轻松支持添加新的自定义数据.数据集应该从标准的类torch.utils.data.Dataset 继承而来,并实现_len和_getitem…
谷歌大脑提出:基于NAS的目标检测模型NAS-FPN,超越Mask R-CNN 朱晓霞发表于目标检测和深度学习订阅 235 广告关闭 11.11 智慧上云 云服务器企业新用户优先购,享双11同等价格 立即抢购 在这篇文章中: 怎么搜出来? 模型怎么样? One More Thing 本文转载自量子位(QbitAI) 这是一只AI生出的小AI. 谷歌大脑的Quoc Le团队,用神经网络架构搜索 (NAS) ,发现了一个目标检测模型.长这样: △ 看不清请把手机横过来 它的准确率和速度都超过了大前辈…
在sklearn当中,可以在三个地方进行模型的评估 1:各个模型的均有提供的score方法来进行评估. 这种方法对于每一种学习器来说都是根据学习器本身的特点定制的,不可改变,这种方法比较简单.这种方法受模型的影响, 2:用交叉验证cross_val_score,或者参数调试GridSearchCV,它们都依赖scoring参数传入一个性能度量函数.这种方法就是我们下面讨论的使用scoring进行模型的性能评估. 3:Metric方法,Metric有为各种问题提供的评估方法.这些问题包括分类.聚类…
原文章地址来自于知乎:https://www.zhihu.com/question/41540197 1. precision 和 recall 的计算(没什么好说的,图片示例相当棒): 图1 图中上部分,左边一整个矩形中(false negative和true positive)的数表示ground truth之中为1的(即为正确的)数据,右边一整个矩形中的数表示ground truth之中为0的数据.精度precision的计算是用 检测正确的数据个数/总的检测个数.召回率recall的计算…
一个评测指标就是MAP(Mean Average Precision)平均精度均值. 转载 2017年09月13日 10:07:12 标签: 深度学习 892 来源01:Mean Average Precision(MAP) 来源02:一个评测指标就是MAP(Mean Average Precision)平均精度均值 来源03:MAP(Mean Average Precision) MAP可以由它的三个部分来理解:P,AP,MAP 先说P(Precision)精度,正确率.在信息检索领域用的比较…
论文基于DA Faster R-CNN系列提出类别正则化框架,充分利用多标签分类的弱定位能力以及图片级预测和实例级预测的类一致性,从实验结果来看,类该方法能够很好地提升DA Faster R-CNN系列的性能   来源:晓飞的算法工程笔记 公众号 论文: Exploring Categorical Regularization for Domain Adaptive Object Detection 论文地址:https://arxiv.org/pdf/2003.09152.pdf 论文代码:h…
wrong 0 2 right 1 / 2 3 right 2 / 3 4 wrong 0 5 right 3 / 5 6 wrong 0 7 wrong 0 8 wrong 0 9 right 4 / 9 10 wrong 0  可以从中看出AP的计算方法,若该位置返回的结果相关,计算该位置的正确率,若不相关,正确率置为0.若返回的这四个的相关文档排在1,2,3,4号位,则对于的正确率都为1,AP也就等于1,可见计算方法是对排序位置敏感的,相关文档排序的位置越靠前,检出的相关文档越多,AP值越…