pytorch做seq2seq注意力模型的翻译】的更多相关文章

以下是对pytorch 1.0版本 的seq2seq+注意力模型做法语--英语翻译的理解(这个代码在pytorch0.4上也可以正常跑): # -*- coding: utf-8 -*- """ Translation with a Sequence to Sequence Network and Attention ************************************************************* **Author**: `Sean…
作者:韩信子@ShowMeAI 教程地址:http://www.showmeai.tech/tutorials/35 本文地址:http://www.showmeai.tech/article-detail/227 声明:版权所有,转载请联系平台与作者并注明出处 收藏ShowMeAI查看更多精彩内容 本系列为吴恩达老师<深度学习专业课程>学习与总结整理所得,对应的课程视频可以在这里查看. 引言 在ShowMeAI前一篇文章 自然语言处理与词嵌入 中我们对以下内容进行了介绍: 词嵌入与迁移学习/…
最近一直在研究深度语义匹配算法,搭建了个模型,跑起来效果并不是很理想,在分析原因的过程中,发现注意力模型在解决这个问题上还是很有帮助的,所以花了两天研究了一下. 此文大部分参考深度学习中的注意力机制(2017版) 张俊林的博客,不过添加了一些个人的思考与理解过程.在github上找到一份基于keras框架实现的可运行的注意模型代码:Attention_Network_With_Keras.如有不足之处,欢迎交流指教. 注意力模型:对目标数据进行加权变化.人脑的注意力模型,说到底是一种资源分配模型…
1. 注意力模型 1.2 注意力模型概述 注意力模型(attention model)是一种用于做图像描述的模型.在笔记6中讲过RNN去做图像描述,但是精准度可能差强人意.所以在工业界,人们更喜欢用attention model. 结合下图,先简单地讲一下,注意力模型的运作原理. 第一步:进来一张图片 第二步:图片进入卷积神经网络,进行前向运算,将某个卷积层的结果输出.注意,上一个笔记中讲的RNN做图像描述,用的是全链接层的输出.至于说哪个层的输出好,没法下结论,这个需要去不同的场景中做实验比较…
此文源自一个博客,笔者用黑体做了注释与解读,方便自己和大家深入理解Attention model,写的不对地方欢迎批评指正.. 1.Attention Model 概述 深度学习里的Attention model其实模拟的是人脑的注意力模型,举个例子来说,当我们观赏一幅画时,虽然我们可以看到整幅画的全貌,但是在我们深入仔细地观察时,其实眼睛聚焦的就只有很小的一块,这个时候人的大脑主要关注在这一小块图案上,也就是说这个时候人脑对整幅图的关注并不是均衡的,是有一定的权重区分的.这就是深度学习里的At…
1.Attention Model 概述 深度学习里的Attention model其实模拟的是人脑的注意力模型,举个例子来说,当我们观赏一幅画时,虽然我们可以看到整幅画的全貌,但是在我们深入仔细地观察时,其实眼睛聚焦的就只有很小的一块,这个时候人的大脑主要关注在这一小块图案上,也就是说这个时候人脑对整幅图的关注并不是均衡的,是有一定的权重区分的.这就是深度学习里的Attention Model的核心思想. 人脑的注意力模型,说到底是一种资源分配模型,在某个特定时刻,你的注意力总是集中在画面中的…
5.3序列模型与注意力机制 觉得有用的话,欢迎一起讨论相互学习~Follow Me 3.7注意力模型直观理解Attention model intuition 长序列问题 The problem of long sequences 对于给定的长序列的法语句子,在下图中的网络中,绿色的编码器读取整个句子,然后记忆整个句子,再在感知机中传递,紫色的解码神经网络将生成英文翻译. 人工的方法不会通过读取在记忆整个句子中的内容,然后从零开始翻译成一个英语句子,人工翻译做的是先翻译出句子的部分,再看下一部分…
欢迎转载,转载请注明:本文出自Bin的专栏blog.csdn.NET/xbinworld. 技术交流QQ群:433250724,欢迎对算法.技术感兴趣的同学加入. 上一篇博文深度学习方法(八):Encoder-Decoder模型,基本Sequence to Sequence模型描述了基本的Encoder-Decoder模型,在作为翻译模型的时候,这种基本的Encoder-Decoder模型有较大缺点,就是Encoder部分每一个输入对Decoder部分每一个输出的贡献都是一样的.下面先看一个例子…
中间表示: C -> C1.C2.C3 i:target -> IT j: source -> JS sim(Query, Key) -> Value Key:h_j,类似某种“basis”: 从图9可以引出另外一种理解,也可以将Attention机制看作一种软寻址(SoftAddressing):Source可以看作存储器内存储的内容,元素由地址Key和值Value组成,当前有个Key=Query的查询,目的是取出存储器中对应的Value值,即Attention数值.通过Quer…
原创文章,转载请注明出处 最近完成了sqe2seq聊天模型,磕磕碰碰的遇到不少问题,最终总算是做出来了,并符合自己的预期结果. 本文目的 利用流程图,从理论方面,回顾,总结seq2seq模型, seq2seq概念 你给模型一段输入,它返回一段输出! 可以用在这些情景,聊天模型.翻译.看图说话.主旨提取等等涉及自然语言的层面,用途较广泛 例如: 输入"今天中午吃什么", 输出"吃兰州拉面". seq2seq是通过encoder编译器将一段输入,编译,汇聚成一个状态.再…