首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
【
Solution Set -「CF 1520」
】的更多相关文章
Diary / Solution Set -「WC 2022」线上冬眠做噩梦
大概只有比较有意思又不过分超出能力范围的题叭. 可是兔子的"能力范围" \(=\varnothing\) qwq. 「CF 1267G」Game Relics 任意一个状态可以描述为 \((m,s)\),表示剩下 \(m\) 个·总价值为 \(s\) 的物品未选.若当前决策为 X 操作,那么由于决策的确定性,我们必然不停 X 直到出货.所以代价为 \[\frac{x}{2}\left(\frac{n}{m}+1\right), \] 若当前决策为 C 操作,代价则为 \(\…
Solution Set -「ARC 107」
「ARC 107A」Simple Math Link. 答案为: \[\frac{a(a+1)\cdot b(b+1)\cdot c(c+1)}{8} \] 「ARC 107B」Quadruple Link. 枚举 \(i=c+d\),则 \(a+b=i+k\),乘法原理计数. 「ARC 107C」Shuffle Permutation Link. 由于矩阵内无相等元素,所以行和列的顺序可以直接乘法原理.以对行的排列方案计数为例,并查集维护所有可以交换位置的行,则行的方案…
Solution -「CF 1342E」Placing Rooks
\(\mathcal{Description}\) Link. 在一个 \(n\times n\) 的国际象棋棋盘上摆 \(n\) 个车,求满足: 所有格子都可以被攻击到. 恰好存在 \(k\) 对车可以互相攻击. 的摆放方案数,对 \(998244353\) 取模. \(n\le2\times10^5\). \(\mathcal{Solution}\) 这道<蓝题>嗷,看来兔是个傻子. 从第一个条件入手,所有格子可被攻击,那就有「每行都有车」或「每列都有车」成立.不妨…
Solution -「CF 1622F」Quadratic Set
\(\mathscr{Description}\) Link. 求 \(S\subseteq\{1,2,\dots,n\}\),使得 \(\prod_{i\in S}i\) 是完全平方数,并最大化 \(|S|\). \(n\le10^6\). \(\mathscr{Solution}\) 爆搜打出 \(20\) 以内的表,发现 \(|S|\approx n\).先研究偶数 \(n=2k\): \[\begin{aligned} \prod_{i=1}^{2k} i! &= \le…
Solution -「CF 923F」Public Service
\(\mathscr{Description}\) Link. 给定两棵含 \(n\) 个结点的树 \(T_1=(V_1,E_1),T_2=(V_2,E_2)\),求一个双射 \(\varphi:V_1\rightarrow V_2\),使得 \(\forall (u,v)\in V_1^2,~(u,v)\notin E_1\lor (\varphi(u),\varphi(v))\notin E_2\),或声明无解. \(n\le10^4\). \(\mathscr{Solution…
Solution -「CF 923E」Perpetual Subtraction
\(\mathcal{Description}\) Link. 有一个整数 \(x\in[0,n]\),初始时以 \(p_i\) 的概率取值 \(i\).进行 \(m\) 轮变换,每次均匀随机取整数 \(r\in[0,x]\),令 \(x\leftarrow r\).求变换完成后 \(x=i~(i=0..n)\) 的概率.答案模 \(998244353\). \(\mathcal{Solution}\) 令向量 \(\boldsymbol p\) 为此时 \(x\) 的取值概率,显然…
Solution -「CF 1586F」Defender of Childhood Dreams
\(\mathcal{Description}\) Link. 定义有向图 \(G=(V,E)\),\(|V|=n\),\(\lang u,v\rang \in E \Leftrightarrow u<v\).求一个对 \(E\) 的染色 \(f\),使得 \(\not\exist \lang v_1,v_2,\cdots,v_{k+1} \rang, |\{f(v_i,v_{i+1})\mid i\in[1,k]\}|=1\),同时最小化 \(f\) 的值域大小. \(2\le k…
Solution -「CF 1237E」Balanced Binary Search Trees
\(\mathcal{Description}\) Link. 定义棵点权为 \(1\sim n\) 的二叉搜索树 \(T\) 是 好树,当且仅当: 除去最深的所有叶子后,\(T\) 是满的: 对于 \(T\) 中任意结点 \(r\),若 \(r\) 存在左儿子 \(u\),则 \(r\not\equiv u\pmod2\): 若 \(r\) 存在右儿子 \(v\),则 \(r\equiv v\pmod2\): 给定 \(n\),求 好树 数量.答案对 \(998244353\) 取…
Solution -「CF 623E」Transforming Sequence
题目 题意简述 link. 有一个 \(n\) 个元素的集合,你需要进行 \(m\) 次操作.每次操作选择集合的一个非空子集,要求该集合不是已选集合的并的子集.求操作的方案数,对 \(10^9+7\) 取模. 数据规模 \(n\le3\times10^4\). \(\text{Solution}\) 显然当 \(n<m\),答案为 \(0\),先特判掉. 首先列一个 naive 的 DP 方程,令 \(f(i,j)\) 为前 \(i\) 次操作选出的集合并大小为 \(j\)…
Solution -「CF 1023F」Mobile Phone Network
\(\mathcal{Description}\) Link. 有一个 \(n\) 个结点的图,并给定 \(m_1\) 条无向带权黑边,\(m_2\) 条无向无权白边.你需要为每条白边指定边权,最大化其边权和,并保证 \(m_2\) 条边都在最小生成树中. \(n,m_1,m_2\le5\times10^5\). \(\mathcal{Solution}\) 先保证在 \(\text{MST}\) 中的限制--指定所有边权为 \(0\).并求出此时的 \(\text{MST}\)…