keras tensorboard的使用】的更多相关文章

http://blog.csdn.net/xiaojiajia007/article/details/72865764 https://stackoverflow.com/questions/42112260/how-do-i-use-the-tensorboard-callback-of-keras https://www.tensorflow.org/get_started/summaries_and_tensorboard 直接上代码 tb_cb=keras.callbacks.Tenso…
from keras.models import Sequential from keras.layers import Dense, Dropout from keras.layers import Conv1D, MaxPooling1D import scipy.io as sio import matplotlib.pyplot as plt from keras.utils import np_utils import keras import numpy as np from ker…
      Deep Deterministic Policy Gradients in TensorFlow AUG 21, 2016 This blog from: http://pemami4911.github.io/blog/2016/08/21/ddpg-rl.html Introduction Deep Reinforcement Learning has recently gained a lot of traction in the machine learning commu…
使用tensorboard将keras的训练过程显示出来(动态的.直观的)是一个绝好的主意,特别是在有架设好的VPS的基础上,这篇文章就是一起来实现这个过程. 一.主要原理 keras的在训练(fit)的过程中,显式地生成log日志:使用tf的tensorboard来解析这个log日志,并且通过网站的形式显示出来. fit的时候加上callbacks=[TensorBoard(log_dir='./tmp/log')] 将运行的结果保存在'./tmp/log'下.执行tensorboard 命令…
from keras.models import Sequential from keras.layers import Dense from keras.wrappers.scikit_learn import KerasRegressor import numpy as np from sklearn.model_selection import train_test_split from sklearn.metrics import mean_squared_error from kera…
1.使用tensorboard可视化ACC,loss等曲线 keras.callbacks.TensorBoard(log_dir='./Graph', histogram_freq= 0 , write_graph=True, write_images=True) tbCallBack = keras.callbacks.TensorBoard(log_dir='./Graph', histogram_freq= 0, write_graph=True, write_images=True)…
训练模型时,很多事情一开始都无法预测.比如之前我们为了找出迭代多少轮才能得到最佳验证损失,可能会先迭代100次,迭代完成后画出运行结果,发现在中间就开始过拟合了,于是又重新开始训练. 类似的情况很多,于是我们想要实时监测训练动态,并能根据训练情况及时对模型采取一定的措施.Keras中的回调函数和tf的TensorBoard就是为此而生. Keras回调函数 回调函数(callbacks)是在调用fit时传入模型的一个对象,它在训练过程中的不同时间点都会被模型调用.它可以访问关于模型状态和性能的所…
def write_log(callback, names, logs, batch_no): for name, value in zip(names, logs): summary = tf.Summary() summary_value = summary.value.add() summary_value.simple_value = value summary_value.tag = name callback.writer.add_summary(summary, batch_no)…
在callback函数中添加tensorboard,启用tensorboard. # TensorBoard callback tensorboard_cb = K.callbacks.TensorBoard( log_dir=MyTensorBoardDir, histogram_freq=1, write_graph=True, write_images=True ) 在fit数据的时候,把该回调添加进去 model.fit(x,y,epochs=Epoch,batch_size=16,ve…
本文主要是使用[监督学习]实现一个图像分类器,目的是识别图片是猫还是狗. 从[数据预处理]到 [图片预测]实现一个完整的流程, 当然这个分类在 Kaggle 上已经有人用[迁移学习](VGG,Resnet)做过了,迁移学习我就不说了,我自己用 Keras + Tensorflow 完整的实现了一遍. 准备工作: 数据集:Dogs vs. Cats注册激活困难,自己想想办法,Ps:实在注册不了百度云有下载自己搜搜 使用编程语言:当然是Python 3,你问我为什么,当然是人生苦短. 使用机器学习库…