leetcode 343 整数拆分】的更多相关文章

343. 整数拆分 343. Integer Break 题目描述 给定一个正整数 n,将其拆分为至少两个正整数的和,并使这些整数的乘积最大化. 返回你可以获得的最大乘积. 每日一算法2019/5/28Day 25LeetCode343. Integer Break 示例 1: 输入: 2 输出: 1 解释: 2 = 1 + 1, 1 × 1 = 1. 示例 2: 输入: 10 输出: 36 解释: 10 = 3 + 3 + 4, 3 × 3 × 4 = 36. 说明: 你可以假设 n 不小于…
343. 整数拆分 给定一个正整数 n,将其拆分为至少两个正整数的和,并使这些整数的乘积最大化. 返回你可以获得的最大乘积. 示例 1: 输入: 2 输出: 1 解释: 2 = 1 + 1, 1 × 1 = 1. 示例 2: 输入: 10 输出: 36 解释: 10 = 3 + 3 + 4, 3 × 3 × 4 = 36. 说明: 你可以假设 n 不小于 2 且不大于 58. class Solution { public int integerBreak(int n) { if (n == 2…
题目描述:给定一个正整数 n,将其拆分为至少两个正整数的和,并使这些整数的乘积最大化. 返回你可以获得的最大乘积. 题目分析 题目中"n 至少可以拆分为两个正整数的和",这个条件说明了 n 是大于 1 的整数. 对 7 来说,可以拆成 3+4,最大乘积是 12. 对 8 来说,可以拆成 3+3+2,最大乘积是 18. 解法 1: 动态规划 状态数组dp[i]表示:数字 i 拆分为至少两个正整数之和的最大乘积.为了方便计算,dp 的长度是 n + 1,值初始化为 1. 显然dp[2]等于…
1.这个题拿到之后没有什么思路,此时就应该考虑暴力法.然而每次不知道要拆成几份,没办法用循环,所以想到用递归. 如图所示进行递归,显然有很多重复的计算,所以用自底向上的动态规划. 2.还有一个问题就是memo[i]是如果拆开i的话的最大值,有些数字比如5=2+3,2*3=6>5,这种数字memo[i]>i,拆开更好,但有的数拆开要比原来的数小,所以要进行判断,选择最大的数字.还要注意一点是至少要拆成两个数字. #include <bits/stdc++.h> using names…
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4651 题意:给出n.求其整数拆分的方案数. i64 f[N]; void init(){    f[0]=f[1]=1; f[2]=2;    int i,j,k,t;    for(i=3;i<N;i++) for(j=1;;j++)    {        FOR0(k,2)        {            if(!k) t=(3*j*j-j)/2;            else t=…
--->题意:给一个函数的定义,F(n)代表n的所有约数之和,并且给出了整数拆分公式以及F(n)的计算方法,对于一个给出的N让我们求1 - N之间有多少个数满足F(x)为偶数的情况,输出这个数. --->分析:来考虑F(x)为奇数的情况,给据题目中给我们的公式,,如果F(x)为奇数,那么这个多项式里面的任何一项都必须是奇数,可以知道p = 2时,        p^e - 1肯定是奇数,如果p != 2,当且仅当e为偶数的时候,此项为奇数,证明如下: 原式变形为[ p^(e+1) -p + (…
分析:题目并不难理解,就是一些细节上的优化需要我们注意,我在没有优化前跑了2000多MS,优化了一些细节后就是400多MS了,之前还TLE了好几次. 方法:将整数拆分为质因子以后,表达为这样的形式,e1*p1 + e2*p2 + .... + en*pn,整数的所有约数的个数为(1+p1)*(1+p2)*(1+pn); 注意:当时我也在担心,题目中要求我们的分解成的两个数不能相等,但是当我们求出约数总数以后直接除了2(因为我们只需要一半),没有特殊处理相等的情况,会不会出错? 其实不会,我们这个…
Ignatius and the Princess III Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Submission(s): 16191    Accepted Submission(s): 11407 Problem Description "Well, it seems the first problem is too easy. I will let…
LeetCode:整数转罗马数字[12] 题目描述 罗马数字包含以下七种字符: I, V, X, L,C,D 和 M. 字符 数值 I 1 V 5 X 10 L 50 C 100 D 500 M 1000 例如, 罗马数字 2 写做 II ,即为两个并列的 1.12 写做 XII ,即为 X + II . 27 写做  XXVII, 即为 XX + V + II . 通常情况下,罗马数字中小的数字在大的数字的右边.但也存在特例,例如 4 不写做 IIII,而是 IV.数字 1 在数字 5 的左边…
一.问题背景  整数拆分,指把一个整数分解成若干个整数的和 如 3=2+1=1+1+1  共2种拆分 我们认为2+1与1+2为同一种拆分 二.定义 在整数n的拆分中,最大的拆分数为m,我们记它的方案数为 f(n,m) 即 n=x1+x2+······+xk-1+xk ,任意 x≤m 在此我们采用递归递推法 三.递推关系 1.n=1或m=1时   拆分方案仅为 n=1 或 n=1+1+1+······ f(n,m)=1 2.n=m时 S1选取m时,f(n,m)=1,即n=m S2不选取m时,f(n…