张宁 Visual-Based Autonomous Driving Deployment from a Stochastic and Uncertainty-Aware Perspective Lei Tai Peng Yun Yuying Chen Congcong Liu Haoyang Ye Ming Liu 从随机和不确定性角度出发的基于视觉的自动驾驶部署链接:https://pan.baidu.com/s/1iako8pSu9nuwCzIfF_M2EQ 提取码:j8bg Abstra…
Andrew Ng deeplearning courese-4:Convolutional Neural Network Convolutional Neural Networks: Step by Step Convolutional Neural Networks: Application Residual Networks Autonomous driving - Car detection YOLO Face Recognition for the Happy House Art: N…
Behavior Trees for Path Planning (Autonomous Driving) 2019-11-13 08:16:52 Path planning in self-driving cars Path planning and decision making for autonomous vehicles in urban environments enable self-driving cars to find the safest, most convenient,…
今天看到一篇关于检测的论文<SqueezeDet: Unified, Small, Low Power Fully Convolutional Neural Networks for Real-Time Object Detection for Autonomous Driving>,论文中的效果还不错,后来查了一下,有一个Tensorflow版本的实现,因此在自己的机器上配置了Tensorflow的环境,然后将其给出的demo跑通了,其中遇到了一些小问题,通过查找网络上的资料解决掉了,在这里…
VS2010环境下: 1.Visual Studio® 2010 Web Deployment Projects下载地址:        http://www.microsoft.com/downloads/details.aspx?FamilyID=89f2c4f5-5d3a-49b6-bcad-f776c6edfa63&displaylang=en 2 安装Visual Studio® 2010 Web Deployment Projects插件,然后再网站项目上点击右键,可以看到多了一项A…
BLVD: Building A Large-scale 5D Semantics Benchmark for Autonomous Driving BLVD:构建自主驾驶的大规模5D语义基准 Jianru Xue, Jianwu Fang, Tao Li, Bohua Zhang, Pu Zhang, Zhen Ye and Jian Dou Abstract—In autonomous driving community, numerous benchmarks have been esta…
论文链接:https://arxiv.org/pdf/1902.09738v2.pdf 这两个月忙着做实验 博客都有些荒废了,写篇用于3D检测的论文解读吧,有理解错误的地方,烦请有心人指正). 博客原作者Missouter,博客园链接https://www.cnblogs.com/missouter/,欢迎交流. [Abstract] 该论文提出了一种结合图像中语义.几何学与稀疏.稠密信息的3D目标检测算法. 该算法用Faster R-CNN接收作为立体输入的左右图像,同时检测.联系两幅图像中的…
使用神经网络来实现自动驾驶,也就是说使汽车通过学习来自己驾驶. 下图是通过神经网络学习实现自动驾驶的图例讲解: 左下角是汽车所看到的前方的路况图像.左上图,可以看到一条水平的菜单栏(数字4所指示方向),白亮的区段显示的就是人类驾驶者选择的方向.而最右端则对应向右急转的操作(箭头3),中心稍微向左一点的位置(箭头2),则表示在这一点上人类驾驶者的操作是慢慢的向左拐.这幅图的第二部分(箭头5)对应的就是学习算法选出的行驶方向,类似的白亮的区段(箭头6)显示的就是神经网络在这里选择的行驶方向是稍微的左…
[中文翻译] 为了帮助您练习机器学习的策略, 在本周我们将介绍另一个场景, 并询问您将如何行动.我们认为, 这个工作在一个机器学习项目的 "模拟器" 将给一个任务, 告诉你一个机器学习项目像什么! 你受雇于一自动驾驶汽车公司.您负责检测图像中的路标 (停车标志.行人过路标志.建筑前方标志) 和交通信号灯 (红色和绿色灯).目标是识别这些对象中的哪一个出现在每个图像中.举例来说, 上述图则载有行人过路标志及红色交通灯. 您的10万标签图像是使用你的车的前置摄像头拍的.这也是你最关心的关于…
文献地址 链接:https://pan.baidu.com/s/1gHrpnOf1FXLp9u8OJ2-oCg 提取码:y2w6 作者 Shashank Kotyan, Danilo Vasconcellos Vargas and Venkanna U. 摘要 从本质上讲,驾驶是一个适合强化学习范式的马尔可夫决策过程.本文提出了一种不需要人工辅助就能学会驾驶汽车的新型算法.我们使用强化学习和进化策略的概念在二维仿真环境中训练我们的模型.通过在自动编码器中引入不同的图像,我们的模型的架构超越了世界…