[译]深度学习(Yann LeCun)】的更多相关文章

深度学习 严恩·乐库  约书亚•本吉奥  杰弗里·希尔顿 摘要深度学习是计算模型,是由多个处理层学习多层次抽象表示的数据.这些方法极大地提高了语音识别.视觉识别.物体识别.目标检测和许多其他领域如药物发现和基因组学的最高水平.深学习发现复杂的结构,在大数据集,通过使用反向传播算法来说明如何一台机器应改变其内部参数,用于计算每个层中表示从前一层的表示.深度卷积网络在处理图像.视频.语音等方面都带来了新的突破,而递归网络在连续的数据,如文本和语音有更出彩的表现.引言机器学习技术增强了现代社会的许多方…
编者按:Quora 上有网友提问:自学机器学习技术,你有哪些建议?(What are your recommendations for self-studying machine learning),Yann LeCun 在该提问下做了解答.本文由雷锋网(公众号:雷锋网)根据 LeCun 的回答整理而来,原文链接:http://www.leiphone.com/news/201611/cWf2B23wdy6XLa21.html 在网上有很多关于 Machine Learning 的材料.教程和视…
对话Facebook人工智能实验室主任.深度学习专家Yann LeCun Yann LeCun(燕乐存),Facebook人工智能实验室主任,NYU数据科学中心创始人,计算机科学.神经科学.电子电气科学教授.他1983年在ESIEE获得电气工程学位,1987年在UPMC获得计算机博士学位.在多伦多大学做了一段时间博士后,于1988年加入位于新泽西州的AT&T贝尔实验室.1996年他成为图像处理研究部的主任,2003年,在普林斯顿NEC研究院经历短暂的Fellow生活以后,加入NYU.2013年,…
2017年3月22日下午,Facebook人工智能研究院院长.纽约大学终身教授Yann LeCun在清华大学大礼堂为校内师生以及慕名而来的业内人士呈现了一场主题为<深度学习与人工智能的未来(Deep Learning and the Future of AI)>的精彩公开课. 随着AlphaGo事件的不断发酵,神经网络成为时下人工智能产学领域万众瞩目的研究焦点,也成为普罗大众的热门话题.事实上,神经网络作为一种算法模型,很早就已经被广泛关注和研究,也曾长时间内陷入发展突破的低潮期.不过,在以G…
2020年Yann Lecun深度学习笔记(下)…
2020年Yann Lecun深度学习笔记(上)…
Game Theory Reveals the Future of Deep Learning Carlos E. Perez Deep Learning Patterns, Methodology and Strategy @ IntuitionMachine.com 译自:https://medium.com/intuitionmachine/game-theory-maps-the-future-of-deep-learning-21e193b0e33a#.2vjbrl5di 若你一直fo…
译自:The Major Advancements in Deep Learning in 2016 建议阅读时间:10分钟 https://tryolabs.com/blog/2016/12/06/majoradvancementsdeeplearning2016/ 在过去的十多年来,深度学习一直是核心话题,2016年也不例外.本文回顾了他们认为可能会推动这个领域发展或已经对这个领域产生巨大贡献的技术.(1)无监督学习有史以来便是科研人员所面临的的主要挑战之一.由于大量产生式模型的提出,201…
https://baijiahao.baidu.com/s?id=1606296521706399213&wfr=spider&for=pc 机器之心整理,机器之心编辑部. 人工智能顶会 IJCAI 2018 的主要议程于昨日在瑞典首都斯德哥尔摩开始.昨天上午,Facebook 首席人工智能科学家.纽约大学教授 Yann LeCun 在会上发表了近一个小时,以<Learning World Models: the Next Step towards AI>为主题的演讲,引起了人…
译自:http://sebastianruder.com/multi-task/ 1. 前言 在机器学习中,我们通常关心优化某一特定指标,不管这个指标是一个标准值,还是企业KPI.为了达到这个目标,我们训练单一模型或多个模型集合来完成指定得任务.然后,我们通过精细调参,来改进模型直至性能不再提升.尽管这样做可以针对一个任务得到一个可接受得性能,但是我们可能忽略了一些信息,这些信息有助于在我们关心的指标上做得更好.具体来说,这些信息就是相关任务的监督数据.通过在相关任务间共享表示信息,我们的模型在…