最近用Maxwell解析MySQL的Binlog,发送到Kafka进行处理,测试的时候发现一个问题,就是Kafka的Offset严重倾斜,三个partition,其中一个的offset已经快200万了,另外两个offset才不到两百.Kafka数据倾斜的问题一般是由于生产者使用的Partition接口实现类对分区处理的问题,一般是对key做hash之后,对分区数取模.当出现数据倾斜时,小量任务耗时远高于其它任务,从而使得整体耗时过大,未能充分发挥分布式系统的并行计算优势(参考Apache Kaf…
一. 数据倾斜的现象 多数task执行速度较快,少数task执行时间非常长,或者等待很长时间后提示你内存不足,执行失败. 二. 数据倾斜的原因 常见于各种shuffle操作,例如reduceByKey,groupByKey,join等操作. 数据问题 key本身分布不均匀(包括大量的key为空) key的设置不合理 spark使用问题 shuffle时的并发度不够 计算方式有误 三. 数据倾斜的后果 spark中一个stage的执行时间受限于最后那个执行完的task,因此运行缓慢的任务会拖累整个…
在做Shuffle阶段的优化过程中,遇到了数据倾斜的问题,造成了对一些情况下优化效果不明显.主要是因为在Job完成后的所得到的Counters是整个Job的总和,优化是基于这些Counters得出的平均值,而由于数据倾斜的原因造成map处理数据量的差异过大,使得这些平均值能代表的价值降低.Hive的执行是分阶段的,map处理数据量的差异取决于上一个stage的reduce输出,所以如何将数据均匀的分配到各个reduce中,就是解决数据倾斜的根本所在.规避错误来更好的运行比解决错误更高效.在查看了…
转自:https://blog.csdn.net/xinzhi8/article/details/71455883 操作: 关键词 情形      后果 Join 其中一个表较小,但是key集中     分发到某一个或几个Reduce 上的数据远高于平均值   大表与大表,但是分桶的判断字段0值或空值过多     这些空值都由一个reduce处理非常慢 group by group by 维度过小,某值的数量过多    处理某值的reduce非常耗时 Count Distinct 某特殊值过多…
1.Map端Join解决数据倾斜   1.Mapreduce中会将map输出的kv对,按照相同key分组(调用getPartition),然后分发给不同的reducetask 2.Map输出结果的时候调用了Partitioner组件(返回分区号),由它决定将数据放到哪个区中,默认的分组规 则为:根据key的hashcode%reducetask数来分发,源代码如下: public class HashPartitioner<K, V> extends Partitioner<K, V&g…
一.Kafka简介 1.1 什么是kafka kafka是一个分布式.高吞吐量.高扩展性的消息队列系统.kafka最初是由Linkedin公司开发的,后来在2010年贡献给了Apache基金会,成为了一个开源项目.主要应用在日志收集系统和消息系统,相信大家之前也听说过其他的消息队列中间件,比如RabbitMQ.AcitveMQ,其实kafka就是这么一个东西,也可以叫做KafkaMQ.总之,Kafka比其他消息队列要好一点,优点也比较多,稳定性和效率都比较高,大家都说好,那就是真的好. 1.2…
这篇主要针对小程序进行演示,既然是发送消息,那么就有三个问题.发送什么内容,给谁发送,怎么发送!往下一条一条解决. 发送什么消息内容 - 通过微信公众号平台 选择对应的消息模板 选择以后在我的模板里面就出现了. 发给谁 既然是发送信息,那么必须有收件人的地址,在微信生态里面,只要是通过微信登录用户都会根据不同小程序分配一个唯一的openid(每个小程序都不一样,但是在当前小程序是唯一的).因为我的系统是使用手机号码注册的,并没有使用微信登录,那么如果要得到微信分配的openid就需要在注册时候使…
在做Shuffle阶段的优化过程中,遇到了数据倾斜的问题,造成了对一些情况下优化效果不明显.主要是因为在Job完成后的所得到的 Counters是整个Job的总和,优化是基于这些Counters得出的平均值,而由于数据倾斜的原因造成map处理数据量的差异过大,使得这些平均 值能代表的价值降低.Hive的执行是分阶段的,map处理数据量的差异取决于上一个stage的reduce输出,所以如何将数据均匀的分配到各个 reduce中,就是解决数据倾斜的根本所在.规避错误来更好的运行比解决错误更高效.在…
在做Shuffle阶段的优化过程中,遇 到了数据倾斜的问题,造成了对一些情况下优化效果不明显.主要是因为在Job完成后的所得到的Counters是整个Job的总和,优化是基于这些 Counters得出的平均值,而由于数据倾斜的原因造成map处理数据量的差异过大,使得这些平均值能代表的价值降低.Hive的执行是分阶段 的,map处理数据量的差异取决于上一个stage的reduce输出,所以如何将数据均匀的分配到各个reduce中,就是解决数据倾斜的根本所在.规 避错误来更好的运行比解决错误更高效.…
1.什么是数据倾斜? 由于数据分布不均匀,造成数据大量的集中到一点,造成数据热点 2.Hadoop 框架的特性 A.不怕数据大,怕数据倾斜 B.Jobs 数比较多的作业运行效率相对比较低,如子查询比较多 C. sum,count,max,min 等聚集函数,通常不会有数据倾斜问题 3.主要表现 任务进度长时间维持在 99%或者 100%的附近,查看任务监控页面,发现只有少量 reduce 子任务未完成,因为其处理的数据量和其他的 reduce 差异过大. 单一 reduce 处理的记录数和平均记…