具体原理参考如下讲义: 1.神经网络 2.反向传导 3.梯度检验与高级优化 看完材料1和2就可以梳理清楚bp神经网络的基本工作原理,下面通过一个C语言实现的程序来练习这个算法 //Backpropagation, 25x25x8 units, binary sigmoid function network //Written by Thomas Riga, University of Genoa, Italy //thomas@magister.magi.unige.it #include <i…
机器学习中,神经网络算法可以说是当下使用的最广泛的算法.神经网络的结构模仿自生物神经网络,生物神经网络中的每个神经元与其他神经元相连,当它“兴奋”时,想下一级相连的神经元发送化学物质,改变这些神经元的电位:如果某神经元的电位超过一个阈值,则被激活,否则不被激活.误差逆传播算法(error back propagation)是神经网络中最有代表性的算法,也是使用最多的算法之一. 误差逆传播算法理论推导 误差逆传播算法(error back propagation)简称BP网络算法.而一般在说BP网…
1.1 案例背景 1.1.1 BP神经网络概述 BP神经网络是一种多层前馈神经网络,该网络的主要特点是信号前向传递,误差反向传播.在前向传递中,输入信号从输入层经隐含层逐层处理,直至输出层.每一层的神经元状态只影响下一层神经元状态.如果输出层得不到期望输出,则转入反向传播,根据预测误差调整网络权值和阔值,从而使BP神经网络预测输出不断逼近期望输出.当输入节点数为$n$.输出节点数为$m$时, BP 神经网络就表达了从$n$个自变量到$m$个因变量的函数映射关系. BP 神经网络预测前首先要训练网…