BP神经网络(原理及MATLAB实现)】的更多相关文章

BP神经网络是深度学习的重要基础,它是深度学习的重要前行算法之一,因此理解BP神经网络原理以及实现技巧非常有必要.接下来,我们对原理和实现展开讨论. 1.原理  有空再慢慢补上,请先参考老外一篇不错的文章:A Step by Step Backpropagation Example 激活函数参考:深度学习常用激活函数之— Sigmoid & ReLU & Softmax 浅显易懂的初始化:CS231n课程笔记翻译:神经网络笔记 2 有效的Trick:神经网络训练中的Tricks之高效BP(…
一.人工神经网络 关于对神经网络的介绍和应用,请看如下文章 ​ 神经网络潜讲 ​ 如何简单形象又有趣地讲解神经网络是什么 二.人工神经网络分类 按照连接方式--前向神经网络.反馈(递归)神经网络 按照学习方式--有导师学习神经网络.无导师学习神经网络 按照实现功能--拟合(回归)神经网络.分类神经网络 三.BP神经网络概述 1. 特点 BP神经网络中 BP 是指 BackPropagation (反向传播) ,指的是误差的反向传播 ,其信号是向前传播的 , 从结构上分类 ,它是前向有导师学习神经…
[废话外传]:终于要讲神经网络了,这个让我踏进机器学习大门,让我读研,改变我人生命运的四个字!话说那么一天,我在乱点百度,看到了这样的内容: 看到这么高大上,这么牛逼的定义,怎么能不让我这个技术宅男心向往之?现在入坑之后就是下面的表情: 好了好了,玩笑就开到这里,其实我是真的很喜欢这门学科,要不喜欢,老子早考公务员,找事业单位去了,还在这里陪你们牛逼打诨?写博客,吹逼? 1神经网络历史(本章来自维基百科,看过的自行跳过) 沃伦·麦卡洛克)[基于数学和一种称为阈值逻辑的算法创造了一种神经网络的计算…
具体原理参考如下讲义: 1.神经网络 2.反向传导 3.梯度检验与高级优化 看完材料1和2就可以梳理清楚bp神经网络的基本工作原理,下面通过一个C语言实现的程序来练习这个算法 //Backpropagation, 25x25x8 units, binary sigmoid function network //Written by Thomas Riga, University of Genoa, Italy //thomas@magister.magi.unige.it #include <i…
转自博客园@编程De: http://www.cnblogs.com/jzhlin/archive/2012/07/28/bp.html  http://blog.sina.com.cn/s/blog_88f0497e0102v79c.html 从神经网络的生物模型说起 我们知道人大脑信息的传递.对外界刺激产生反应都由神经元控制的,人脑就是由上百亿个的这样神经元构成.这些神经元之间并不孤立而且联系很密切,每个神经元平均与几千个神经元相连接,因此构成了人脑的神经网络.刺激在神经网络中的传播是遵循一…
机器学习中,神经网络算法可以说是当下使用的最广泛的算法.神经网络的结构模仿自生物神经网络,生物神经网络中的每个神经元与其他神经元相连,当它“兴奋”时,想下一级相连的神经元发送化学物质,改变这些神经元的电位:如果某神经元的电位超过一个阈值,则被激活,否则不被激活.误差逆传播算法(error back propagation)是神经网络中最有代表性的算法,也是使用最多的算法之一. 误差逆传播算法理论推导 误差逆传播算法(error back propagation)简称BP网络算法.而一般在说BP网…
bp(back propagation)修改每层神经网络向下一层传播的权值,来减少输出层的实际值和理论值的误差 其实就是训练权值嘛 训练方法为梯度下降法 其实就是高等数学中的梯度,将所有的权值看成自变量,误差E作为因变量 即E=f(w1,w2,w3,....,wk)//这些w就是每一层向下一层转移的权值,具体在哪层不要管,只有计算上的差别 现在我们希望最小化E的值, 怎么最小化呢?就通过修改w的值来最小化 首先我们计算E的梯度T 然后沿着梯度下降就行了,就是说,假设原来的向量是X,那么新的向量X…
人工神经网络是一种经典的机器学习模型,随着深度学习的发展神经网络模型日益完善. 联想大家熟悉的回归问题, 神经网络模型实际上是根据训练样本创造出一个多维输入多维输出的函数, 并使用该函数进行预测, 网络的训练过程即为调节该函数参数提高预测精度的过程.神经网络要解决的问题与最小二乘法回归解决的问题并无根本性区别. 回归和分类是常用神经网络处理的两类问题, 如果你已经了解了神经网络的工作原理可以在http://playground.tensorflow.org/上体验一个浅层神经网络的工作过程. 感…
Python语言编写BP神经网络 2016年10月31日 16:42:44 ldy944758217 阅读数 3135   人工神经网络是一种经典的机器学习模型,随着深度学习的发展神经网络模型日益完善. 联想大家熟悉的回归问题, 神经网络模型实际上是根据训练样本创造出一个多维输入多维输出的函数, 并使用该函数进行预测, 网络的训练过程即为调节该函数参数提高预测精度的过程.神经网络要解决的问题与最小二乘法回归解决的问题并无根本性区别. 回归和分类是常用神经网络处理的两类问题, 如果你已经了解了神经…
人工神经网络概述: 人工神经元模型: 神经网络的分类: 按照连接方式,可以分为:前向神经网络 vs. 反馈(递归)神经网络: 按照学习方式,可以分为:有导师学习神经网络 vs. 无导师学习神经网络: 按照实现功能,可以分为:拟合(回归)神经网络 vs. 分类神经网络. 数据归一化:将数据映射到[0, 1]或[-1, 1]区间或其他的区间. 数据归一化的原因: 1.输入数据的单位不一样,有些数据的范围可能特别大,导致的结果是神经网络收敛慢.训练时间长.2.数据范围大的输入在模式分类中的作用可能会偏…
教程内容:<MATLAB神经网络原理与实例精解>随书附带源程序.rar9.随机神经网络.rar8.反馈神经网络.rar7.自组织竞争神经网络.rar6.径向基函数网络.rar5.BP神经网络.rar4.线性神经网络.rar3.单层感知器.rar2.MATLAB函数与神经网络工具箱.rar11.神经网络应用实例.rar10.用GUI设计神经网络.rar1.神经网络概述与MATLAB快速入门.rar下载地址:http://www.fu83.cn/thread-323-1-1.html…
本文主要内容包含: (1) 介绍神经网络基本原理,(2) AForge.NET实现前向神经网络的方法,(3) Matlab实现前向神经网络的方法 . 第0节.引例  本文以Fisher的Iris数据集作为神经网络程序的測试数据集.Iris数据集能够在http://en.wikipedia.org/wiki/Iris_flower_data_set  找到.这里简要介绍一下Iris数据集: 有一批Iris花,已知这批Iris花可分为3个品种,现须要对其进行分类.不同品种的Iris花的花萼长度.花萼…
1.1 案例背景 1.1.1 BP神经网络概述 BP神经网络是一种多层前馈神经网络,该网络的主要特点是信号前向传递,误差反向传播.在前向传递中,输入信号从输入层经隐含层逐层处理,直至输出层.每一层的神经元状态只影响下一层神经元状态.如果输出层得不到期望输出,则转入反向传播,根据预测误差调整网络权值和阔值,从而使BP神经网络预测输出不断逼近期望输出.当输入节点数为$n$.输出节点数为$m$时, BP 神经网络就表达了从$n$个自变量到$m$个因变量的函数映射关系. BP 神经网络预测前首先要训练网…
BP神经网络介绍 神经网络是机器学习中一种常见的数学模型,通过构建类似于大脑神经突触联接的结构,来进行信息处理.在应用神经网络的过程中,处理信息的单元一般分为三类:输入单元.输出单元和隐含单元. 顾名思义:输入单元接受外部给的信号与数据:输出单元实现系统处理结果的输出:隐含单元处在输入和输出单元之间,从网络系统外部是无法观测到隐含单元的结构的.除了上述三个处理信息的单元之外,神经元间的连接强度大小由权值等参数来决定. 图为BP神经网络结构:(图片均为截图来的笔记,蒟蒻手动狗头) 单个神经元的工作…
1.神经网络工具箱概述 Matlab神经网络工具箱几乎包含了现有神经网络的最新成果,神经网络工具箱模型包括感知器.线性网络.BP网络.径向基函数网络.竞争型神经网络.自组织网络和学习向量量化网络.反馈网络.本文只介绍BP神经网络工具箱. 2.BP神经网络工具箱介绍 BP神经网络学习规则是不断地调整神经网络的权值和偏值,使得网络输出的均方误差和最小.下面是关于一些BP神经网络的创建和训练的名称: (1)newff:创建一前馈BP网络(隐含层只有一层) (2)newcf:创建一多层前馈BP网络(隐含…
MATLAB 中BP神经网络算法的实现 BP神经网络算法提供了一种普遍并且实用的方法从样例中学习值为实数.离散值或者向量的函数,这里就简单介绍一下如何用MATLAB编程实现该算法. 具体步骤   这里以一个普遍实用的简单案例为例子进行编程的说明. 假设一组x1,x2,x3的值对应一个y值,有2000组这样的数字,我们选择其中1900组x1,x2,x3和y作为样本,其余100组x1,x2,x3作为测试数据来验证.   首先需要读取这些数据,并把数据赋值给input 和 output . 我是把数据…
什么是BP网络 BP网络的数学原理 BP网络算法实现 转载请声明出处http://blog.csdn.net/zhongkejingwang/article/details/44514073  上一篇文章介绍了KNN分类器,当时说了其分类效果不是很出色但是比较稳定,本文后面将利用BP网络同样对Iris数据进行分类. 可以结合下面这几篇文章一起看: http://www.cnblogs.com/jzhlin/archive/2012/07/28/bp.html http://www.cnblogs…
基本就三个函数: newff():创建一个bp神经网络 train():训练函数 sim():仿真函数 同时具有可视化界面,但目前不知道可视化界面如何进行仿真,且设置不太全 工具箱:Neural net fitting textread使用方法:http://blog.sina.com.cn/s/blog_9e67285801010bju.html ex1. clear; clc; %注意P矩阵,matlab默认将一列作为一个输入 P=[0.5152 0.8173 1.0000 ; 0.8173…
2.1 案例背景 在工程应用中经常会遇到一些复杂的非线性系统,这些系统状态方程复杂,难以用数学方法准确建模.在这种情况下,可以建立BP神经网络表达这些非线性系统.该方法把未知系统看成是一个黑箱,首先用系统输入输出数据训练BP神经网络,使网络能够表达该未知函数,然后用训练好的BP神经网络预测系统输出. 本章拟合的非线性函数为\[y = {x_1}^2 + {x_2}^2\]该函数的图形如下图所示. t=-5:0.1:5; [x1,x2] =meshgrid(t); y=x1.^2+x2.^2; s…
工序工时由该工序的工艺参数决定,有了工时后乘以固定因子就是计件工资.一般参考本地小时工资以及同类小时工资并考虑作业的风险等因素给出固定因子 采用的VS2010 , Matlab2015a 64,  开发端是win7 64 , 部署端是win2012 R2 Datacenter 64 Matlab部分 下面是样本数据: 注意样本数据要尽可能全面,比方这里会交换L与R后做为另一组样本数据一起交给系统训练 打钩的数据会抽取来训练,WTime是目标,所以5个输入1个输出. 训练代码 clc clear…
1.使用误差反向传播(error back propagation )的网络就叫BP神经网络 2.BP网络的特点: 1)网络由多层构成,层与层之间全连接,同一层之间的神经元无连接 . 2)BP网络的传递函数必须可微.BP网络一般使用Sigmoid函数或线性函数作为传递函数.  在输出层使用Sigmoid函数会把输出限定在一个较小的范围内,经典方法是隐藏层用Sigmoid函数,输出层用线性函数 3)BP网络采用误差反向传播算法(Back-Propagation Algorithm)进行学习.在BP…
3.1 案例背景 遗传算法(Genetic Algorithms)是一种模拟自然界遗传机制和生物进化论而形成的一种并行随机搜索最优化方法. 其基本要素包括:染色体编码方法.适应度函数.遗传操作和运行参数. 非线性函数:$y=x_{1}^{2}+x_{2}^{2}$ 3.2 模型建立 3.2.1 算法流程 遗传算法优化使用遗传算法优化BP神经网络的权值和阔值,种群中的每个个体都包含了一 个网络所有权值和阔值,个体通过适应度函数计算个体适应度值,遗传算法通过选择.交叉和变异操作找到最优适应度值对应个…
1 贝叶斯网络在地学中的应用 1 1.1基本原理及发展过程 1 1.2 具体的研究与应用 4 2 BP神经网络在地学中的应用 6 2.1BP神经网络简介 6 2.2基本原理 7 2.3 在地学中的具体应用与研究 9 结论 11 参考文献 12 1 贝叶斯网络在地学中的应用 贝叶斯网络是一种概率网络,它是基于概率推理的图形化网络,而贝叶斯公式则是这个概率网络的基础.贝叶斯网络是基于概率推理的数学模型,所谓概率推理就是通过一些变量的信息来获取其他的概率信息的过程,基于概率推理的贝叶斯网络(Bayes…
作者:李瞬生链接:https://www.zhihu.com/question/44328472/answer/128973724来源:知乎著作权归作者所有.商业转载请联系作者获得授权,非商业转载请注明出处. BP Neural Network - 使用 Automatic Differentiation (Backpropagation) 进行导数计算的层级图模型 (layer-by-layer graphical model) 只要模型是一层一层的,并使用AD/BP算法,就能称作 BP Ne…
摘 要 在MATLAB环境下利用USB摄像头采集字符图像,读取一帧保存为图像,然后对读取保存的字符图像,灰度化,二值化,在此基础上做倾斜矫正,对矫正的图像进行滤波平滑处理,然后对字符区域进行提取分割出单个字符,识别方法一是采用模板匹配的方法逐个对字符与预先制作好的字符模板比较,如果结果小于某一阈值则结果就是模板上的字符:二是采用BP神经网络训练,通过训练好的net对待识别字符进行识别.最然后将识别结果通过MATLAB下的串口工具输出51单片机上用液晶显示出来. 关键字: 倾斜矫正,字符分割,模板…
摘 要 在MATLAB环境下利用USB摄像头採集字符图像.读取一帧保存为图像.然后对读取保存的字符图像,灰度化.二值化,在此基础上做倾斜矫正.对矫正的图像进行滤波平滑处理,然后对字符区域进行提取切割出单个字符.识别方法一是採用模板匹配的方法逐个对字符与预先制作好的字符模板比較,假设结果小于某一阈值则结果就是模板上的字符:二是採用BP神经网络训练.通过训练好的net对待识别字符进行识别.最然后将识别结果通过MATLAB下的串口工具输出51单片机上用液晶显示出来. keyword: 倾斜矫正.字符切…
简介:感知机在1957年就已经提出,可以说是最为古老的分类方法之一了.是很多算法的鼻祖,比如说BP神经网络.虽然在今天看来它的分类模型在很多数时候泛化能力不强,但是它的原理却值得好好研究.先学好感知机算法,对以后学习神经网络,深度学习等会有很大的帮助. 一,感知机模型 (1).超平面的定义 令w1,w2,...wn,v都是实数(R) ,其中至少有一个wi不为零,由所有满足线性方程w1*x1+w2*x2+...+wn*xn=v 的点X=[x1,x2,...xn]组成的集合,称为空间R的超平面. 从…
秋招刚结束,这俩月没事就学习下斯坦福大学公开课,想学习一下深度学习(这年头不会DL,都不敢说自己懂机器学习),目前学到了神经网络部分,学习起来有点吃力,把之前学的BP(back-progagation)神经网络复习一遍加深记忆.看了许多文章发现一PPT上面写的很清晰,就搬运过来,废话不多说,直入正题: 单个神经元 神经网络是由多个"神经元"组成,单个神经元如下图所示: 这其实就是一个单层感知机,输入是由ξ1 ,ξ2 ,ξ3和Θ组成的向量.其中Θ为偏置(bias),σ为激活函数(tran…
1.BP神经网络训练过程论述 BP网络结构有3层:输入层.隐含层.输出层,如图1所示. 图1 三层BP网络结构 3层BP神经网络学习训练过程主要由4部分组成:输入模式顺传播(输入模式由输入层经隐含层向输出层传播计算).输出误差逆传播(输出的误差由输出层经隐含层传向输入层).循环记忆训练(模式顺序传播与误差逆传播的计算过程反复交替循环进行)和学习结果判别(判定全局误差是否趋向极小值). 下面具体介绍和分析用梯度下降法训练BP神经网络,在第1次输入样品(1=1,2,--,N)进行训练时各个 参数的表…
上一次我们讲了M-P模型,它实际上就是对单个神经元的一种建模,还不足以模拟人脑神经系统的功能.由这些人工神经元构建出来的网络,才能够具有学习.联想.记忆和模式识别的能力.BP网络就是一种简单的人工神经网络.我们的第二话就从BP神经网络开始漫谈吧. BP的来源 “时势造英雄”,一个伟大的人物的登场总是建立在历史的需求之下,所以我们剖析一个人,得先看看他的出身时代.同样的道理,在讲BP网络的特性和用途之前,我们需要先了解一下它的来源和诞生原因,以便理解它的重要性. 1.1 最简单的神经网络结构——感…