来源于知乎:pytorch中model.eval()会对哪些函数有影响? - 蔺笑天的回答 - 知乎 https://www.zhihu.com/question/363144860/answer/951669576 内容 蔺笑天 37 人赞同了该回答 model的eval方法主要是针对某些在train和predict两个阶段会有不同参数的层.比如Dropout层和BN层 Dropout在train时随机选择神经元而predict要使用全部神经元并且要乘一个补偿系数 BN在train时每个bat…
https://pytorch.org/docs/stable/nn.html 1)卷积层 class torch.nn.Conv2d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True) 二维卷积层, 输入的尺度是(N, Cin,H,W),输出尺度(N,Cout,Hout,Wout)的计算方式: 说明 stride: 控制相关系数的计算步长 dilation:…
正文 现在很多网站都上了各种前端反爬手段,无论手段如何,最重要的是要把包含反爬手段的前端javascript代码加密隐藏起来,然后在运行时实时解密动态执行. 动态执行js代码无非两种方法,即eval和Function.那么,不管网站加密代码写的多牛,我们只要将这两个方法hook住,即可获取到解密后的可执行js代码. 注意,有些网站会检测eval和Function这两个方法是否原生,因此需要一些小花招来忽悠过去. 挂钩代码 首先是eval的挂钩代码: (function() { if (windo…
一直对于model.eval()和torch.no_grad()有些疑惑 之前看博客说,只用torch.no_grad()即可 但是今天查资料,发现不是这样,而是两者都用,因为两者有着不同的作用 引用stackoverflow: Use both. They do different things, and have different scopes. with torch.no_grad: disables tracking of gradients in autograd. model.ev…
1. torch.nn与torch.nn.functional之间的区别和联系 https://blog.csdn.net/GZHermit/article/details/78730856 nn和nn.functional之间的差别如下,我们以conv2d的定义为例 torch.nn.Conv2d import torch.nn.functional as F class Conv2d(_ConvNd): def __init__(self, in_channels, out_channels…
我们在训练时如果使用了BN层和Dropout层,我们需要对model进行标识: model.train():在训练时使用BN层和Dropout层,对模型进行更改. model.eval():在评价时将BN层和Dropout层冻结,这两个操作不会对模型进行更改.…
在代码中改好存储Log的路径 命令行中输入 tensorboard --logdir /home/huihua/NewDisk1/PycharmProjects/pytorch-deeplab-xception-master/run 会出来一个网站,复制到浏览器即可可视化loss,acc,lr等数据的变化过程. 举例说明pytorch中设置summary的方式: import argparse import os import numpy as np from tqdm import tqdm…
作者:infiniteft链接:https://www.zhihu.com/question/66782101/answer/579393790来源:知乎著作权归作者所有.商业转载请联系作者获得授权,非商业转载请注明出处. 两者的相同之处: nn.Xxx和nn.functional.xxx的实际功能是相同的,即nn.Conv2d和nn.functional.conv2d 都是进行卷积,nn.Dropout 和nn.functional.dropout都是进行dropout,.....: 运行效率…
原文地址: https://blog.csdn.net/weixin_40100431/article/details/84349470 ----------------------------------------------------------------------------------------- 最近修改一个代码的时候,当使用网络进行推理的时候,发现每次更改测试集的batch size大小竟然会导致推理结果不同,甚至产生错误结果,后来发现在网络中定义了BN层,BN层在训练过程…
转载:https://zhuanlan.zhihu.com/p/53927068 https://blog.csdn.net/wangdongwei0/article/details/88956527 pytorch最后的权重文件是.pth格式的. 经常遇到的问题: 进行finutune时,改配置文件中的学习率,发现程序跑起来后竟然保持了以前的学习率, 并没有使用新的学习率. 原因: 首先查看.pth文件中的内容,我们发现它其实是一个字典格式的文件: 其中保存了optimizer和schedul…