文章转自微信公众号:[机器学习炼丹术] 参考目录: 目录 0 概述 1 主要内容 1.1 Non local的优势 1.2 pytorch复现 1.3 代码解读 1.4 论文解读 2 总结 论文名称:"Non-local Neural Networks" 论文地址:https://arxiv.org/abs/1711.07971 0 概述 首先,这个论文中的模块,叫做non-local block,然后这个思想是基于NLP中的self-attention自注意力机制的.所以在提到CV中…
论文信息 论文标题:Bilinear Graph Neural Network with Neighbor Interactions论文作者:Hongmin Zhu, Fuli Feng, Xiangnan He, Xiang Wang, Yan Li, Kai Zheng, Yongdong Zhang论文来源:2019, NeurIPS论文地址:download 论文代码:download 1 Introduction GNNs 中的图卷积操作可以认为是对目标节点的邻居特征线性聚合(加权和)…
提出了模型和损失函数 论文名称:扩展卷积密集连接神经网络用于时域实时语音增强 论文代码:https://github.com/ashutosh620/DDAEC 引用:Pandey A, Wang D L. Densely connected neural network with dilated convolutions for real-time speech enhancement in the time domain[C]//ICASSP 2020-2020 IEEE Internati…
Progressive Neural Network  Google DeepMind 摘要:学习去解决任务的复杂序列 --- 结合 transfer (迁移),并且避免 catastrophic forgetting (灾难性遗忘) --- 对于达到 human-level intelligence 仍然是一个关键性的难题.本文提出的 progressive networks approach 朝这个方向迈了一大步:他们对 forgetting 免疫,并且可以结合 prior knowledg…
论文标题:DEEP GRAPH INFOMAX 论文方向:  论文来源:ICML 2017 论文链接:https://arxiv.org/abs/1704.01212 论文代码: 1 介绍 本文的目标是证明:「能够应用于化学预测任务的模型可以直接从分子图中学习到分子的特征,并且不受到图同构的影响.」 本文提出的 MPNN 是一种用于图上监督学习的框架.为此,作者将应用于图上的监督学习框架称之为消息传递神经网络(MPNN),这种框架是从目前比较流行的支持图数据的神经网络模型中抽象出来的一些共性,抽…
CRNN 论文: An End-to-End Trainable Neural Network for Image-based Sequence Recognition and Its Application to Scene Text Recognition CRNN不定长中文识别项目下载地址: https://download.csdn.net/download/dcrmg/10248818 CRNN是一种卷积循环神经网络结构,用于解决基于图像的序列识别问题,特别是场景文字识别问题.CRNN…
目录 摘要 一.引言 二.相关工作 基于体素网格的特征学习 直接从非结构化点云中学习特征 从多视图模型中学习特征 几何深度学习的学习特征 三.GAPNet架构 3.1 GAPLayer 局部结构表示 单头GAPLayer 多头机制 3.2注意力池化层 3.3 GAPNet架构 四.实验 4.1分类 数据集 网络结构 训练细节 结果 消融研究 4.2 语义部件分割 数据集 模型结构 训练细节 结果 五.结论 GAPNet: Graph Attention based Point Neural Ne…
论文信息 论文标题:GCC: Graph Contrastive Coding for Graph Neural Network Pre-Training论文作者:Jiezhong Qiu, Qibin Chen, Yuxiao Dong, Jing Zhang, Hongxia Yang, Ming Ding, Kuansan Wang, Jie Tang论文来源:2020, KDD论文地址:download论文代码:download 1 Introduction 本文的预训练任务:子图实例判…
论文题目:<Structural Deep Network Embedding>发表时间:  KDD 2016 论文作者:  Aditya Grover;Aditya Grover; Jure Leskovec论文地址:  DownloadGithub:      Go1.Go2 ABSTRACT Motivation 由于底层网络结构复杂,Shallow model 无法捕捉高度非线性的网络结构,导致网络表示次优. 因此,如何找到一种能够有效捕捉高度非线性网络结构并保留全局和局部结构的方法是…
Sequence to Sequence Learning with NN <基于神经网络的序列到序列学习>原文google scholar下载. @author: Ilya Sutskever (Google)and so on 一.总览 DNNs在许多棘手的问题处理上取得了瞩目的成绩.文中提到用一个包含2层隐藏层神经网络给n个n位数字排序的问题.如果有好的学习策略,DNN能够在监督和反向传播算法下训练出很好的参数,解决许多计算上复杂的问题.通常,DNN解决的问题是,算法上容易的而计算上困难…