题目链接: https://jzoj.net/senior/#main/show/6087 题目: 题解: 只需要统计$\prod_{i=l}^r (1-\frac{a_i}{x})$ =$exp(\sum_{i=l}^r ln(1-\frac{a_i}{x}))(x>a_i)$ 我们可以把$ln(1-x)|x<1|$泰勒展开,得到$-\sum_{i=1}^{∞}\frac{x^i}{i}=0-\frac{x}{1}-\frac{x^2}{2}-\frac{x^3}{3}-...$ 那么里面化…
题目链接: https://jzoj.net/senior/#main/show/6086 题目: 题解: 一群数字的最小公倍数就是对它们质因数集合中的每个质因数的指数取$max$然后相乘 这样的子树查询一般都与$dfs$序有关 不妨把一个质因数$p$拆分成$p^1,p^2,p^3...$这样若干种颜色,每种颜色对答案的贡献都是$p$ 我们从另一个角度来考虑如何处理“不同的数”.先不管深度,考虑两个点权相等的节点$u$和$v$,点权为$val$,他们自己的贡献是使得所有子树内包含他的节点答案乘以…
题目链接: https://jzoj.net/senior/#contest/show/2683/0 题目: 题解: 不妨枚举一个点,让两颗树都以这个点为根,求联通块要么点数为$0$,要么包括根(即联通块必须从根开始) 考虑一个不是根的点$x$,若$x$在联通块以内,要保证联通块的连通性,那么从$x$的父亲要在联通块以内 这种一个点选了就必须要选另一个点的问题是典型的最大权闭合子图模型 做法如下 设$s$为源点,$t$为汇点. 使$s$连向所有的正权点(非负权点),边权为点权 使所有非负权点(负…
题目链接: https://jzoj.net/senior/#main/show/6101 题目: 题解: 设$f_i$表示从节点$i$到节点$n$的期望时间,$f_n=0$ 最优策略就是如果从$i,j$之间存在边且$f_j<f_i$的话,那么就从$i$走到$j$ 有$f_i=\frac{1}{m}(\sum_{link[i][j]=1}min(f_i,f_j))+1+\frac{m-du_i}{m}f_i$ $du_i$是$i$的度数 即$du_if_i=\sum_{link[i][j]=1}…
题目链接: https://jzoj.net/senior/#contest/show/2686/2 题目: 题解: 说实话这题调试差不多花了我十小时,不过总算借着这道题大概了解了计算几何的基础知识 首先,若$1$号星与其他两颗星共线,那么显然新出现的 1 号星也必须在这条线上,因此可行的面积为 0 ,下文我们考虑 1 号星不与其他任意两颗星共线的情况 一个$O(n^2 log n)$的做法是枚举每一对星,$1$号星移动必然不能越过每一对星形成的直线,这样我们就可以通过半平面交解决这个问题 事实…
题目链接: https://jzoj.net/senior/#main/show/6080 题目: 题意: 给定$n,m,u,v$ 设$t_i=ui+v$ 求$\sum_{k_1+k_2+...+k_m=n}t_1^{k_1}t_2^{k_2}...t_m^{k_m}(k_1,k_2,...,k_m∈N)$ 算法一: 对于$m=1$的点,显然答案就是$t_1^n$,快速幂计算即可 获得$5$分 算法二: 对于$m=2$的点,$\sum_{k1+k2=n}t_1^{k_1}t_2^{k_2}=\f…
题目链接: https://jzoj.net/senior/#main/show/6092 题目: 知识点--平面图转对偶图 在求最小割的时候,我们可以把平面图转为对偶图,用最短路来求最小割,这样会比dinic更快,但只是只用于网格图 网格图(平面图),即满足可以画在平面,且任意两条边的交点只能是边的顶点的图 性质:一个联通的平面图有$n$个点,$m$条边,$f$个面,那么有$f=m-n+2$ 对于一个平面图,我们可以找到它的对偶图.做法是把每一个分割出来的面作为一个个顶点,两个面之间存在边并且…
题目链接: https://jzoj.net/senior/#main/show/6084 https://www.luogu.org/problemnew/show/P4916 题目: 题解: 注:本题解大部分摘自Imagine大佬提供在洛谷的题解 我们设$f(x)$表示最小循环节长度为x的合法序列数,那么有$ans=\sum_{d|gcd(n,m)}\frac{1}{d}f(d)$ 这是因为最小循环节为d的序列对应的环会被计算d次,比如 0101,最小循环节长度为 2(循环节为 01),其对…
题目链接: https://jzoj.net/senior/#main/show/5926 题目: 题解: 显然最小的最大路径在最小生成树上(最小生成树=最小瓶颈生成树) 于是我们建出kruskal重构树,两个节点的d值就是lca代表的边的边权,问题转化为对于每个lca计算以它为lca的且满足$|c_u-c_v|$的点对的个数 对于每个lca我们枚举 size 较小的那棵子树内的点(每次选择size较小的暴力计算就是启发式合并),算出在另一棵子树中能与它组成点对的点的个数.这个问题实际上就是询问…
题目链接: http://172.16.0.132/senior/#main/show/5343 题目: 题解: 记旋转i次之后的答案为$ans_i$,分别考虑每个元素对ans数组的贡献 若$s_i<i$: 对$ans_0,..,ans_{i-s_i}$,贡献分别是$i-s_i,i-s_i-1,...,0$ 对$ans_{i-s_i+1},...,ans_{i-1}$,贡献分别是$1,...,s_i-1$ 对$ans_i,...,ans_{n-1}$,贡献分别是$n-s_i,...,i+1-s_…